Limits Question

Limit as h approaches 0 (cot(5pi/6 +h)-cot(5pi/6))/h

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to substitute 0 for h in equation under limit such that:

`lim_(h-gt0) (cot(5pi/6 + h) - cot (5pi/6))/h = (cot(5pi/6) - cot (5pi/6))/0 = 0/0`

Since the limit is indeterminate, you may use l'Hospital's theorem such that:

`lim_(h-gt0) ((cot(5pi/6 + h) - cot (5pi/6))')/(h') = lim_(h-gt0) -(((5pi/6 + h)')/(sin^2(5pi/6+h)))/1`

`lim_(h-gt0) -(((5pi/6 + h)')/(sin^2(5pi/6+h)))/1 = lim_(h-gt0) -1/(sin^2(5pi/6+h))`

You need to substitute 0 for h in equation under limit such that:

`lim_(h-gt0) -1/(sin^2(5pi/6+h)) = -1/(sin^2(5pi/6)) = -1/(sin^2(pi/6))`

`lim_(h-gt0) -1/(sin^2(5pi/6+h)) = -1/((1/2)^2) = -4`

Hence, evaluating the limit to the function when h approaches to 0 yields `lim_(h-gt0) (cot(5pi/6 + h) - cot (5pi/6))/h = -4` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial