`lim_(x ->0) (sqrt(1 + 2x) - sqrt(1 - 4x))/x` Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`lim_(x->0)(sqrt(1+2x)-sqrt(1-4x))/x`

`=lim_(x->0)((sqrt(1+2x)-sqrt(1-4x))(sqrt(1+2x)+sqrt(1-4x)))/(x(sqrt(1+2x)+sqrt(1-4x)))`

`=lim_(x->0)((1+2x)-(1-4x))/(x(sqrt(1+2x)+sqrt(1-4x)))`

`=lim_(x->0)(6x)/(x(sqrt(1+2x)+sqrt(1-4x)))`

`=lim_(x->0)6/(sqrt(1+2x)+sqrt(1-4x))`

plug in the value,

`=6/(sqrt(1)+sqrt(1))=6/2`

=3

Approved by eNotes Editorial Team

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial