`lim_(x -> 0) (sin^3(x-pi))/x^3` is a. -1 b.  0 c. 1 d. `pi` e. Non-exisitent 

2 Answers | Add Yours

embizze's profile pic

embizze | High School Teacher | (Level 1) Educator Emeritus

Posted on

Find `lim_(x->0)(sin^3(x-pi))/x^3` :

`sin(x-pi)=-sinx` ; substituting we get:

`lim_(x->0)(sin^3(x-pi))/x^3=lim_(x->0)(-sin^3x)/x^3`

``Since `lim_(x->0)(sinx)/x=1` we get `lim_(x->0)[(-sinx)/x * (-sinx)/x * (-sinx)/x]=-1`

The answer is (a) -1

mvcdc's profile pic

mvcdc | Student, Graduate | (Level 2) Associate Educator

Posted on

`lim_(x->0) (sin^3(x-pi))/(x^3)` is of indeterminate type 0/0 when you plug-in 0 to x. Hence, we use L'Hospital's Rule:

`lim_(x->0) (sin^3(x-pi))/x^3 = lim_(x->0) ((d/(dx))sin^3(x-pi))/(d/(dx) x^3) = lim_(x->0) -(cosx*sin^2x)/x^2`

The resulting expression, when 0 is again plugged into x, is another indeterminate type 0/0. We use L'Hospital's Rule again:

`lim_(x->0) -(cosx*sin^2x)/x^2 = - (d/(dx) cosx*sin^2x)/(d/(dx) x^2) = lim_(x->0) (sinx - 3sin(3x))/(8x) `

`= 1/8 lim_(x->0) (sinx - 3sin(3x))/x` 

Again, this resulting expression is indeterminate type 0/0. Hence, we shall apply L'Hospital's rule for the 3rd time.

`1/8 lim_(x->0) (sinx - 3sin(3x))/x = 1/8 lim_(x->0) (d/(dx) sinx - 3sin(3x))/(d/(dx) x) `

`= 1/8 lim_(x->0) (cosx - 9cos(3x))`

Since the limit of a sum is just the sum of the limits, we can re-write this last expression as:

`1/8 [lim_(x->0) cos x - lim_(x->0) 9cos(3x)]`

`1/8 [ lim_(x->0) cosx - 9 lim_(x->0) cos(3x)]`

`lim_(x->0)cosx = cos(0) = 1`

 Hence, 

`1/8 [ lim_(x->0) cosx - 9 lim_(x->0) cos(3x)] = 1/8[ 1- 9lim_(x->0)cos(3x)]` 

Since the function f(x) = cos(x) is continuous at x = 0, 

`lim_(x->0) cos(3x) = cos(lim_(x->0) 3x) = cos(3 lim_(x->0) x)=cos(0) = 1`

Hence,

`1/8 [ lim_(x->0) cosx - 9 lim_(x->0) cos(3x)] = 1/8 [1 - 9(1)]`

`= 1/8(-8) = -1` 

Therefore:

`lim_(x->0) (sin^3(x-pi))/(x^3) = -1`

The limit of the given expression is -1.


Notes: 

  1. L'Hospital's Rule can only be used when the indeterminate form is infinity/infinity or 0/0.
  2. If f(x) is continuous at x = a, you can interchange the limit and the function evaluation.
  3. Evaluating limit of sums is equivalent to evaluating sum of limits.

We’ve answered 318,960 questions. We can answer yours, too.

Ask a question