lim x--> 0 (cotx - 1/x ) Find the limit using L'Hospital's Rule where appropriate. If L'Hospital's Rule does not apply, explain why ? lim x--> 0 (cotx - 1/x )
- print Print
- list Cite
Expert Answers
beckden
| Certified Educator
calendarEducator since 2011
write562 answers
starTop subjects are Math, Science, and Business
cot(x)=(cos(x)/sin(x)) so
` cot(x)-1/x = cos(x)/sin(x)-1/x = (xcos(x)-sin(x))/(xsin(x))`
So
`lim_(x->0) (cot(x)-1/x) = lim_(x->0) (xcos(x)-sin(x))/(xsin(x))`
Since this limit is `0/0` we can use L'Hopital's rule and get
`= lim_(x->0) (-xsin(x)+cos(x)-cos(x))/(xcos(x)+sin(x))=lim_(x->0) (-xsin(x))/(xcos(x)+sin(x))`
This limit is `0/0` again so reapply L'Hopital's rule again
`= lim_(x->0) (-xcos(x)-sin(x))/(-xsin(x)+cos(x)+cos(x))`
Now evaluating this we get
`= (-0(cos(0))-sin(0))/(-0(sin(0))+cos(0)+cos(0))=(0)/(2) = 0`
So
`lim_(x->0) cot(x)-1/x = 0`
Related Questions
- Calc.Find the limit using L'Hospital's Rule. lim x--->0 (x)/(tan^-1 (4x))
- 1 Educator Answer
- `lim_(x->1^+) [ln(x^7 - 1) - ln(x^5 - 1)]` Find the limit. Use l’Hospital’s Rule where...
- 1 Educator Answer
- Find the limit use L'Hospital's Rule where appropriate. If L'Hospital's Rule does not apply,...
- 2 Educator Answers
- `lim_(x->0) (cos(mx) - cos(nx))/(x^2)` Find the limit. Use l’Hospital’s Rule where...
- 1 Educator Answer
- `lim_(x ->0) (sqrt(1 + 2x) - sqrt(1 - 4x))/x` Find the limit. Use l’Hospital’s Rule where...
- 1 Educator Answer