Let `z= cos theta +i sin theta`  .Then the value of `sum_(m=1)^15` `lm(Z^(2m-1))` at `theta=2` deg is

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to evaluate the sum of imaginaries of the given powers of complex number z, such that:

`Sigma_(m=1)^15 Im(z^(2m-1)) = Im(z^(2*1-1)) + Im(z^(2*2-1)) + Im(z^(2*3-1)) + ... + Im(z^(2*15-1))`

`Sigma_(m=1)^15 Im(z^(2m-1)) = Im(z^1) + Im(z^3) + Im(z^5) + ... + Im(z^29)`

All the powers of the complex number z, may be evaluated with De Moivre formula, such that:

`z^n = (cos theta + i*sin theta)^n => z^n = (cos (n*theta) + i*sin (n*theta))`

`z^3 = cos (3theta) + i*sin(3 theta)`

........

`z^29 = cos (29theta) + i*sin(29 theta)`

The imaginary part of the sum is `Im(z^1+z^3+...z^29) = cos theta + cos (3theta) + ... + cos(29 theta)`

You may group the terms such that:

`cos theta + cos (29 theta) = 2cos ((theta + 29theta)/2)*cos((theta - 29theta)/2)`

`cos theta + cos (29 theta) = 2cos (15theta)cos(-14theta)`

Since `cos(-theta)=cos theta`

`cos theta + cos (29 theta) = 2cos (15theta)cos(14theta)`

You may calculate the next sum `cos (3 theta) + cos (27theta),` such that:

`cos (3 theta) + cos (27theta) = 2cos (15theta)cos(12theta)`

`cos (5 theta) + cos (25 theta) = 2cos (15theta)cos(10theta)`

`cos (7 theta) + cos (23 theta) = 2cos (15theta)cos(8theta)`

`cos (9 theta) + cos (21 theta) = 2cos (15theta)cos(6theta)`

`cos (11 theta) + cos (19 theta) = 2cos (15theta)cos(4theta)`

`cos (13 theta) + cos (17 theta) = 2cos (15theta)cos(2theta)`

Notice that the term `cos (15 theta)` remains. You may take out the common factor `cos (15theta)` such that:

`Im(z^1+z^3+...z^29) = cos (15 theta)(2cos(12theta) + 2cos(10theta) + 2cos(8theta) + 2cos(6theta) + 2cos(4theta) + 2cos(2theta) + 1)`

You may put now` theta = 2^o` , such that:

`cos (15*2^o) = cos 30^o = sqrt3/2`

You may group again the terms, such that:

`2cos(12theta) + 2cos(2theta) = 4 cos (7 theta)*cos (5 theta)`

`2cos(10theta) + 2cos(4theta) = 4 cos (7 theta)*cos (3 theta)`

`2cos(8theta) + 2cos(6theta) = 4 cos (7 theta)*cos ( theta)`

Factoring out 4` cos (7 theta)` yields:

`2cos(12theta) + 2cos(10theta) + 2cos(8theta) + 2cos(6theta) + 2cos(4theta) + 2cos(2theta) = 4 cos (7 theta)*(cos (5 theta) + cos (3 theta) + cos ( theta))`

You may group again the terms, such that:

`cos (5 theta) + cos ( theta) = 2cos (3theta)*cos (2theta)`

`2cos (3theta)*cos (2theta) + cos (3theta) = cos(3theta)(2cos(2theta) + 1))`

Using the formula of double angle yields:

`cos (2theta) = 2cos^2 theta - 1`

`cos(3theta)(2cos(2theta) + 1)) = cos(3theta)(4cos^2 theta -2 + 1))`

`cos(3theta)(2cos(2theta) + 1)) = cos(3theta)(4cos^2 theta -1))`

`2cos(12theta) + 2cos(10theta) + 2cos(8theta) + 2cos(6theta) + 2cos(4theta) + 2cos(2theta) = 4 cos (7 theta)*cos(3 theta)*(4cos^2 theta -1))`

`Im(z^1+z^3+...z^29) = cos (15 theta)(4 cos (7 theta)*cos(3 theta)*(4cos^2 theta -1)) + 1)`

Hence, evaluating `Sigma_(m=1)^15 Im(z^(2m-1)) = (sqrt3/2)*)(4 cos (14^o)*cos(6^o)*(4cos^2(2^o) -1)) + 1).`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team