The rules of vector addition and substraction are simply to add or subtract the values for each axis.

i.e., `(x,y)+(m,n)=(x+m,y+n)`

i.e., `(x,y)-(m,n)=(x-m,y-n)`

a)

`v_1+v_2=(1,6)+(5,-3)=(6,3)`

`v_1-v_2=(1,6)-(5,-3)=(-4,9)`

`v_2-v_1=(5,-3)-(1,6)=(4,-9)`

b)

v1 = (1,6)

v2 = (5,-3)

v1 + v2 = (6,3)

v1 - v2 = (-4,9)

v2 - v1 = (4,-9)

## Unlock

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

The rules of vector addition and substraction are simply to add or subtract the values for each axis.

i.e., `(x,y)+(m,n)=(x+m,y+n)`

i.e., `(x,y)-(m,n)=(x-m,y-n)`

a)

`v_1+v_2=(1,6)+(5,-3)=(6,3)`

`v_1-v_2=(1,6)-(5,-3)=(-4,9)`

`v_2-v_1=(5,-3)-(1,6)=(4,-9)`

b)

v1 = (1,6)

v2 = (5,-3)

v1 + v2 = (6,3)

v1 - v2 = (-4,9)

v2 - v1 = (4,-9)

**Further Reading**