The only condition that isn't obvious is the associativity of multiplication, i.e. whether `(z_1*z_2)*w =z_1*(z_2*w)` for any complex numbers `z_1, z_2` and any vector `w in W.`

Let's multiply numbers first and then the resulting number by a vector:

`((a_1+b_1i)*(a_2+b_2i))*(v_1,v_2) = ((a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i)*(v_1,v_2) = `

`= ((a_1a_2-b_1b_2)v_1-(a_1b_2+a_2b_1)v_2, (a_1b_2+a_2b_1)v_1+(a_1a_2-b_1b_2)v_2).`

Now multiply vector by the second number and then the resulting vector by the first number:

`(a_1+b_1i)*` `((a_2+b_2 i)` `*(v_1, v_2)) =`

`=(a_1+b_1i)*(a_2v_1-b_2v_2,b_2v_1+a_2v_2) =`

`= (a_1(a_2v_1-b_2v_2)-b_1(b_2v_1+a_2v_2), b_1(a_2v_1-b_2v_2)+a_1(b_2v_1+a_2v_2)) =`

`= ((a_1a_2-b_1b_2)v_1-(a_1b_2+b_1a_2)v_2, (b_1a_2+a_1b_2)v_1+(a_1a_2-b_1b_2)v_2).`

As we see, the results are the same. So **yes**, W is a complex vector space.

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now