Given `p(x)=2x^3-8x^2-23x+63` find `p(-2i)` using synthetic division.

p(-2i) is the remainder found after using synthetic division. (For this reason, synthetic division is often called synthetic substitution.)

-2i | 2 -8 -23 63 -4i -8+16i 32+62i --------------------------------------- 2 -8-41 -31+16i 95+62i

**Thus p(-2i)=95+62i.**

You can check using substitution:

...

## See

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

Given `p(x)=2x^3-8x^2-23x+63` find `p(-2i)` using synthetic division.

p(-2i) is the remainder found after using synthetic division. (For this reason, synthetic division is often called synthetic substitution.)

-2i | 2 -8 -23 63

-4i -8+16i 32+62i

---------------------------------------

2 -8-41 -31+16i 95+62i

**Thus p(-2i)=95+62i.**

You can check using substitution:

`p(-2i)=2(-2i)^3-8(-2i)^2-23(-2i)+63`

`=2(-8i^3)-8(4i^2)-23(-2i)+63`

`=-16i^3-32i^2+46i+63`

`=16i+32+46i+63`

`=95+62i`

The polynomial p(x)=2x^3-8x^2-23x+63

p(-2i) = 2*(-2i)^3-8(-2i)^2-23*(-2i)+63

= 2*-8*i^3-8*4*i^2+ 46i+63

= 2*8*i+8*4+ 46i+63

= 16i + 32 + 46i + 63

= 62i + 95

**The polynomial p(-2i) = 62i + 95**