Let f(x) be a continuous function defined on the interval [2, infinity)such that f(3)=5 abs(f(x)) is less than (x^6)+1 and integrate from 3 to infinity of f(x)e^(-x/6)dx=-8 Determine the value...
Let f(x) be a continuous function defined on the interval [2, infinity)such that
and
Determine the value of
- print Print
- list Cite
Expert Answers
calendarEducator since 2011
write5,349 answers
starTop subjects are Math, Science, and Business
You should solve the improper integral `int_3^oo f'(x)e^(-x/6)dx` , using integration by parts such that:
`int udv = uv - int vdu`
You should consider `u = f(x) => du = f'(x)dx ` and `dv= e^(-x/6)dx => v = int e^(-x/6)dx` Using the substitution `-x/6 = t => -dx/6 = dt => dx = -6dt ` yields:
`int e^t*(-6dt) = -6e^t + c => v = -6e^(-x/6)`
Hence, evaluating the integral yields:
`int_3^n f(x)e^(-x/6)dx = -6f(x)e^(-x/6)+ 6int_3^n f'(x)*e^(-x/6)dx`
Since the problem provides the information that `lim_(n->oo)int_3^n f(x)e^(-x/6)dx = -8` , hence, you may evaluate `int_3^n f'(x)*e^(-x/6)dx` such that:
`-8 = lim_(n->oo)(-6f(n)e^(-n/6)+ 6f(3)e^(-3/6))+ 6int_3^oo f'(x)*e^(-x/6)dx`
`6int_3^oo f'(x)*e^(-x/6)dx = -8- lim_(n->oo)(-6f(n)e^(-n/6) + 6f(3)e^(-3/6))`
Since the problem provides the information that `f(3) = 5` yields:
`6int_3^oo f'(x)*e^(-x/6)dx = -8 - 6*5*e^(-1/2) - lim_(n->oo)(-6f(n)e^(-n/6))`
Since the problem provides the information that `|f(x)|<x^6+1 ` yields:
`6int_3^oo f'(x)*e^(-x/6)dx = -8 - 6*5*e^(-1/2) - lim_(n->oo)(-6(n^6+1)e^(-n/6))`
`6int_3^oo f'(x)*e^(-x/6)dx = -8 - 30/sqrt e+ 6lim_(n->oo)((n^6+1)e^(-n/6))`
You need to evaluate the limit `lim_(n->oo)((n^6+1)e^(-n/6))` such that:
`lim_(n->oo)((n^6+1)e^(-n/6)) = lim_(n->oo)(n^6+1)/(e^(n/6)) = oo/oo`
Since evaluating the limit yields the indetermination oo/oo, then you may use l'Hospital's theorem such that:
`lim_(n->oo)(n^6+1)/(e^(n/6)) = lim_(n->oo)((n^6+1)')/((e^(n/6)) ')`
`lim_(n->oo)(n^6+1)/(e^(n/6)) = lim_(n->oo)(6n^5)/((1/6)e^(n/6)) = oo/oo`
`lim_(n->oo)(30n^4)/((1/36)e^(n/6)) = oo/oo`
`lim_(n->oo)(30*4*3*2*1)/((1/36)*(1/36)*(1/36)*e^(n/6)) = 720/oo = 0`
`6int_3^oo f'(x)*e^(-x/6)dx = -8 - 30/sqrt e + 0`
You need to divide by 6 such that:
`int_3^oo f'(x)*e^(-x/6)dx = -4/3 - 5/sqrt e`
Hence, evaluating the improper integral `int_3^oo f'(x)e^(-x/6)dx,` using the information provided by the problem, yields `int_3^oo f'(x)*e^(-x/6)dx = -4/3 - 5/sqrt e` .
Related Questions
- Integration 0 to infinity (x^4 e^-2ax dx)
- 1 Educator Answer
- integral cos (x^3) dx is?
- 1 Educator Answer
- Evaluate the integral integrate of (e^(3x))/((e^x+1))dx
- 1 Educator Answer
- What is the integral `int sin^6 x dx`
- 1 Educator Answer
- Evaluate the indefinite integral integrate of (x^3(ln(x))dx)
- 2 Educator Answers
Unlock This Answer Now
Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.