# Let f(x)= 4((x-8)^(2/3))+4(A) Find all critical values and list them below. Note: If there are no critical values, enter 'NONE'. (B) Use interval notation to indicate where f(x) is increasing. (C)...

Let f(x)= 4((x-8)^(2/3))+4

(A) Find all critical values and list them below. Note: If there are no critical values, enter 'NONE'.

(B) Use interval notation to indicate where f(x) is increasing.

(C) Use interval notation to indicate where f(x) is decreasing.

(D) List the x values of all local maxima of f. If there are no local maxima, enter 'NONE'.

x values of local maximums = ?

(E) List the x values of all local minima of f. If there are no local minima, enter 'NONE'.

x values of local minimums = ?

*print*Print*list*Cite

A) You need to solve the equation f'(x)=0 to find teh critical values of function such that:

`f'(x) = 4*(2/3)*(x-8)^(2/3-1)`

`f'(x) = (8/3)*(x-8)^(-1/3)`

`f'(x) = 8/(3(x-8)^(1/3))`

`f'(x) = 8/(3root(3)(x-8))`

**Notice that `f'(x)!=0` for any value of x, hence the function has no critical values.**

**B)Notice that the function increases over R set.**

**C)The function does not decrease over R set.**

**D) Since the function has no critical values, hence the function has no maximum or minimum points.**