Length of diagonals of parallelogram r 8 & 10 cm, angle included between diagonals is 60 degree. Find the area of parallelogram.

3 Answers

giorgiana1976's profile pic

giorgiana1976 | College Teacher | (Level 3) Valedictorian

Posted on

The area of parallelogram could be found in various ways. One formula says that area of parallelogram is the sum of the areas of the 4 triangles which are formed by diagonals, inside of parallelogram.

We name the diagonals: AC and BD. The intersection between them is the point O. We know that the 2 segments (AO=OC and BO=OD) which are the result of the intersection of diagonals are equal, so AO=OC=5cm and BO=OD=4cm.

The triangle formed is AOD, in which we know the following:

2 sides and the angle between:

AO=5cm, DO=4cm and <AOD=60

AREA OF AOD TRIANGLE= (AO*OD*sin60)/2=(5*4*0.86)/2=8.6cm^2

AREA OF AOB TRIANGLE = (AO*OB*sin 120)/2= (5*4* 0*86)/2=8.6cm^2


revolution's profile pic

revolution | College Teacher | (Level 1) Valedictorian

Posted on

Let's name the pallellogram ABCD. The diagonals are called AC and the other one BD. The angle of intersection is 60 degrees. Let's name the intersection O. AO=CO=10/2=5cm as intersection of diagonals are equal, as well as BO=DO=8/2=4cm.

To find the triangle AOD, we use 1/2 ab sin60

= 1/2(AO)(DO)sin60

= 1/2*4*5*sin60

= 10sin60

= 8.66 cm square

To find area of parellogram, knowing that each of the triangle equals to each other, we:

area of parallelogram= 8.66*4

= 34.64 cm square.

neela's profile pic

neela | High School Teacher | (Level 3) Valedictorian

Posted on

We know that the diagonals bisect each other in a parallelogram.

We konow that a diagonal divides a parallelogram into two congruent triangles.

Thus  the area of 4 triangles in the parallelogram ABCD  with its diagonals  bisecting at E  have to be equal in area and their sum is the area of the parallelogram. Let the angle BEC =60 deg.

Then the area of the triangle BEC=(1/2)EB*ECsin60

Area of the parallelogram ABCD= 4*{(1/2)EB*EC*sin60=

=4(1/2)(8/2)(10/2)sin60=40sin60=34.6411 sqcm