The L.C.M and H.C.F of two numbers are 840 and 14 respectively and if ona of the numbers is 42 then find the other number.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Let q the second number.

 

Either you know the following theorem:

`LCM(x,y)*HCF(x,y)=x*y`

and apply it to q and 42:

`42q=840*14`

Therefore q=840*14/42=280

 

or we find a second method

Use the prime factorization:

840=5*7*2^3*3

42=2*3*7

 

q is a divisor of 840 therefore q is the product of some of the terms 5, 7, 2^3, 3

Let's find which ones.

3 is a divisor of 42, 3 is not a divisor of LCM(q,42) therefore 3 is not a divisor of q.

5 is a divisor of HCF(q,42) and 5 is not a divisor of 42 therefore 5 is a divisor of q.

7 is a divisor of LCM(q,42) therefore 7 is a divisor of q and 42

2^3 is a divisor of 42 or q and is not a divisor of 42 therefore 2^3 is a divisor of q.

 

In conclusion, q=7*2^3*5=280

 

 

Approved by eNotes Editorial Team

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial