The equation of motion with constant acceleration a is

`d = v_0t + (at^2)/2` , where d is distance, t is time and `v_0` is the initial velocity. Since both Jack and Jill start from rest, their initial velocity is 0.

a) The distance Jill ran before she fell down, after 20 s, is

`d = (.3 * 20^2)/2 = 60 ` meters.

b) The distance Jack ran before Jill fell, after 20 s, is

`d = (.25*20^2)/2 = 50 ` meters

c) The speed with which Jack was running when Jill fell is

`V = at = 0.25*20 = 5 ` m/s

d) The time it would take Jack to reach Jill is the time it would take him to run remaiming 10 meters. It is the time it would take him to run 60 meters minus the time it took him to run 50 meters (20 seconds).

The time it would take him to run 60 meters is determined by

`d = (at^2)/2`

`60 = (0.25*t^2)/2`

`t^2 = (2*60)/0.25 = 480 s^2`

`t= 22` s, to the nearest second.

22 s - 20 s = 2s, so it would take Jack 2 seconds to run into Jill after she fell.

**a) 60 meters**

**b) 50 meters**

**c) 5 m/s**

**d) 2 seconds**

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now