The International Space Station, with a mass of 4.19x10^5 kg, is in uniform circular motion with a radius of 6.8x10^6m as measured from the center of the earth. Calculate the speed of the ISS as it...
The International Space Station, with a mass of 4.19x10^5 kg, is in uniform circular motion with a radius of 6.8x10^6m as measured from the center of the earth. Calculate the speed of the ISS as it revolves around earth
- print Print
- list Cite
Expert Answers
calendarEducator since 2010
write12,544 answers
starTop subjects are Math, Science, and Business
A body in revolution around the Earth is kept in its orbit due to a centripetal force that acts on it accelerating it towards the Earth. The centripetal force is equivalent to the gravitational force of attraction between the body and the Earth. If the speed of the object is v and its radius is R, the centripetal force required is `m*v^2/R` . The gravitational force of attraction between the object and the Earth is `(m*Me*G)/R^2` . Equating the two gives `v^2 = (G*Me)/R` or `v = sqrt((G*Me)/R)`
The mass of the Earth is `5.97219*10^24` kg and the radius of the International Space Station's orbit is `6.8x10^6` m. The gravitational constant G = `6.673*10^-11` m^3*kg^-1*s^-2. Using these gives the speed of the International Space Station as `sqrt((6.673*10^-11*5.97219*10^24)/(6.8*10^6))` = 7655.48 m/s^2
The International Space Station is moving around the Earth at 7655.48 m/s^2
Related Questions
- what is constant for uniform circular motion?
- 3 Educator Answers
- Calculate the kinetic energy of Earth due to its spinning about its axis, and compare your answer...
- 1 Educator Answer
- In a uniform circular motion the speed continuously changes because of the change of ___ of the...
- 2 Educator Answers
- On Earth, an astronaut and his space suit weigh 1960 N. While working outside of the...
- 1 Educator Answer
- A proton moves in a circular orbit with a radius of 65 cm that is perpendicular to a uniform...
- 1 Educator Answer