`int_0^infty11xe^(-x)dx` Evaluate the improper integral. Give your answer using the constant e, or round to six decimal places. Enter diverges if the integral diverges.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Let's first calculate indefinite integral by using integration by parts

`int11xe^(-x)dx=11int x e^(-x)dx=|(u=x, dv=e^(-x)dx),(du=dx, v=-e^(-x))|`

`=11(-xe^(-x)-int-e^(-x)dx)=11(-xe^(-x)+e^(-x))`

Now we can calculate our improper integral. 

`int_0^infty11xe^(-x)dx=lim_(R->infty)int_0^R11xe^(-x)dx=`

Now we use the what we have calculated before.

`lim_(R->infty)11(-xe^(-x)-e^(-x))|_0^R=`

`11(lim_(R->infty)(-Re^(-R)-e^(-R))+0+1)=11(0+0+1)=11`

In the line above `lim_(R->infty)(-Re^(-R)-e^(-R))=0` because

`lim_(R->infty)-e^(-R)=0` which is easily seen. And by L'Hospital rule

`lim_(R->infty)-Re^(-R)=lim_(R->infty)-e^(-R)=0`.

So your solution is `int_0^infty11xe^(-x)dx=11.`

Approved by eNotes Editorial Team