Given
`int x(e^(-4x)) dx`
by applying integration by parts, we'll get the answer
let `u=x => u'= 1`
`v'=e^(-4x) so , v= -1/4e^(-4x)`
Now by integration by parts ,
`int uv' dx = uv - int u'v dx`
so ,
`int xe^(-4x) dx = -x/4e^(-4x) -int (1) -1/4e^(-4x) dx`
=`-x/4e^(-4x) +1/4int e^(-4x) dx`
=`-x/4e^(-4x) +1/4 int e^(-4x) dx`
let us find
`int e^(-4x) dx`
let `u= -4x`
`du = -4dx` so `dx = -1/4du`
so,
`int e^(-4x) dx= int e^(u) -1/4du`
=`-1/4int e^u du`
=`-1/4e^u = -1/4e^(-4x)`
so, now
`int xe^(-4x) dx = -x/4e^(-4x) +1/4int e^(-4x) dx`
=`-x/4e^(-4x) +1/4 (-1/4)e^(-4x)`
=`-x/4e^(-4x) -1/16e^(-4x) +C`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.