`int x/sqrt(x^2 + x + 1) dx` Evaluate the integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`intx/sqrt(x^2+x+1)dx`

Let's rewrite the integrand by completing the square of the denominator,

`=intx/sqrt((x+1/2)^2+3/4)dx`

Now let's apply the integral substitution,

Let `u=x+1/2`

`x=u-1/2`

du=1dx

`=int(u-1/2)/sqrt(u^2+3/4)du`

`=int(2u-1)/sqrt(4u^2+3)du`

Now apply the sum rule,

`=int(2u)/sqrt(4u^2+3)du-int1/sqrt(4u^2+3)du`

`=2intu/sqrt(4u^2+3)du-int1/sqrt(4u^2+3)du`

Now let's evaluate the first integral by applying the integral substitution,

Let `v=4u^2+3`

`dv=8udu`

`intu/sqrt(4u^2+3)du=int1/(8sqrt(v))dv`

`=1/8intv^(-1/2)dv`

`=1/8(v^(-1/2+1))/(-1/2+1)`

`=1/8v^(1/2)/(1/2)`

`=2/8v^(1/2)`

`=1/4sqrt(v)`

substitute back `v=4u^2+3`

`=1/4sqrt(4u^2+3)`

Now let's evaluate the second integral `int1/sqrt(4u^2+3)du` using integral substitution,

For `sqrt(bx^2+a)` substitute `x=sqrt(a)/sqrt(b)tan(v)` ,

Let `u=sqrt(3)/2tan(v)`

`du=sqrt(3)/2sec^2(v)dv`

`int1/sqrt(4v^2+3)du=int(sqrt(3)/2sec^2(v))/sqrt(4(sqrt(3)/2tan(v))^2+3)dv`

`=int(sqrt(3)sec^2(v))/(2sqrt(3tan^2(v)+3))dv`

`=sqrt(3)/2int(sec^2(v))/sqrt(3tan^2(v)+3)dv`

`=sqrt(3)/2int(sec^2(v))/(sqrt(3)sqrt(tan^2+1))dv`

`=1/2int(sec^2(v))/sqrt(tan^2(v)+1)dv`

Now use the identity:`1+tan^2(x)=sec^2(x)`

`=1/2int(sec^2(v))/sqrt(sec^2(v))dv`

assuming sec(v)`>=0`

`=1/2intsec(v)dv`

Now using the common integral,

`intsec(v)dx=ln((sec(v)+tan(v))`

`=1/2(ln(sec(v)+tan(v))`

Substitute back `v=arctan((2u)/sqrt(3))`

`=1/2[ln{sec(arctan((2u)/sqrt(3)))+tan(arctan((2u)/sqrt(3))}]`

`=1/2[ln{sqrt(1+(4u^2)/3)+(2u)/sqrt(3)}]`

`int(2u-1)/sqrt(4u^2+3)du=2(1/4sqrt(4u^2+3))-1/2ln(sqrt(1+4u^2/3)+(2u)/sqrt(3))`

`=1/2sqrt(4u^2+3)-1/2ln(sqrt(1+(4u^2)/3)+(2u)/sqrt(3))`

Substitute back `u=x+1/2`

`=1/2sqrt(4(x+1/2)^2+3)-1/2ln(sqrt(1+(4(x+1/2)^2)/3)+(2(x+1/2))/sqrt(3))`

`=1/2sqrt(4(x^2+1/4+x)+3)-1/2ln(sqrt(1+4/3(x^2+1/4+x))+(2/sqrt(3))(2x+1)/2)`

`=1/2sqrt(4x^2+1+4x+3)-1/2ln(sqrt((3+4x^2+1+4x)/3)+(2x+1)/sqrt(3))`

`=1/2sqrt(4x^2+4x+4)-1/2ln(sqrt((4x^2+4x+4)/3)+(2x+1)/sqrt(3))`

`=1/2sqrt(4(x^2+x+1))-1/2ln((2/sqrt(3))sqrt(x^2+x+1)+(2x+1)/sqrt(3))`

`=sqrt(x^2+x+1)-1/2ln((2sqrt(x^2+x+1)+2x+1)/sqrt(3))`

add a constant C to the solution,

`=sqrt(x^2+x+1)-1/2ln((2sqrt(x^2+x+1)+2x+1)/sqrt(3))+C`

 

 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team