Recall that indefinite integral follows `int f(x) dx = F(x) +C`
where:
`f(x)` as the integrand function
`F(x)` as the antiderivative of `f(x)`
`C` as the constant of integration.
The given integral problem: `int x^2sqrt(2+9x^2) dx ` resembles one of the formulas from the integration table. We follow the integral formula for function with roots as:
`int u^2sqrt(a^2+u^2)du = u/8(a^2+2u^2)sqrt(a^2+u^2) -a^4/8ln|u+sqrt(a^2+u^2)| +C` .
For easier comparison, we apply u-substitution by letting:
`u^2 = 9x^2` or `(3x)^2 `
then `u = 3x` or `x=u/3` .
For the derivative of u, we get: `du = 3 dx` or `(du)/3 = dx` .
Note: The corresponding value of `a^2=2 `
then `a =sqrt(2)` and `a^4 = (a^2)^2 =2^2 =4`
Plug-in the values of `u = 3x` , `x=u/3` and `(du)/3 = dx` , we get:
`int x^2sqrt(2+9x^2)dx=int (u/3)^2sqrt(2+u^2)* (du)/3`
`=int u^2/9*sqrt(2+u^2)* (du)/3`
`=int u^2/27sqrt(2+u^2)du`
Apply the basic integration property: `int c*f(x) dx = c int f(x) dx` .
`int u^2/27*sqrt(2+u^2)*du =1/27int u^2sqrt(2+u^2)du`
Apply the aforementioned integral formula with `a^2 =2` , we get:
`1/27 int u^2sqrt(2+u^2)du=1/27*[u/8(2+2u^2)sqrt(2+u^2) -4/8ln|u+sqrt(2+u^2)|]+C`
`= u/216(2+2u^2)sqrt(2+u^2) -1/2ln|u+sqrt(2+u^2)|+C`
Plug-in `u =3x` on `u/216(2+2u^2)sqrt(2+u^2) -1/2ln|u+sqrt(2+u^2)|+C` , we get the indefinite integral as:
`int x^2sqrt(2+9x^2) dx=(3x)/216(2+2(3x)^2)sqrt(2+(3x)^2) -1/2ln|3x+sqrt(2+(3x)^2)|+C`
`= x/72(2+18x^2)sqrt(2+9x^2) -1/2ln|3x+sqrt(2+9x^2)|+C`
`= ((2x+18x^3)sqrt(2+9x^2))/72 -(ln|3x+sqrt(2+9x^2)|)/2+C`
or `(xsqrt(2+9x^2))/36+(x^3sqrt(2+9x^2))/4 -(ln|3x+sqrt(2+9x^2)|)/2+C`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.