`int x^2/sqrt(2x-x^2) dx` Complete the square and find the indefinite integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Recall that indefinite integral follows `int f(x) dx = F(x) +C`

where:

`f(x)` as the integrand function

`F(x)` as the antiderivative of `f(x)`

`C` as the constant of integration..

To evaluate the given integral problem: `int x^2/sqrt(2x-x^2) dx` , we apply completing the square on the expression: `2x-x^2` .

Completing the square:

Factor out `(-1)`  from `2x-x^2` to get `(-1)(x^2-2x)`

The `x^2-2x` or `x^2-2x+0` resembles` ax^2+bx+c` where:

`a= 1` and `b =-2` that we can plug-into `(-b/(2a))^2` .

`(-b/(2a))^2= (-(-2)/(2*1))^2`

               `= (2/2)^2`

               ` = 1^2`

               ` =1`

To complete the square, we add and subtract `1` inside the ():

`(-1)(x^2-2x) =(-1)(x^2-2x+1 -1)`

Distribute `(-1)` in "`-1` "to move it outside the () .

`(-1)(x^2-2x+1 -1)= (-1)(x^2-2x+1)+ (-1)(-1)`

                                        `= (-1)(x^2-2x+1)+ 1`

Apply factoring for the perfect square trinomial: `x^2-2x+1= (x-1)^2`

`(-1)(x^2-2x+1)+ 1=-(x-1)^2 + 1`

                                         `= 1-(x-1)^2`

Apply  `2x-x^2=1-(x-2)^2`  to the integral, we get: `int x^2/sqrt(1-(x-1)^2) dx`

Apply u-substitution by letting `u =x-1` then `x = u+1` and `du =dx` . The integral becomes:

`int x^2/sqrt(1-(x-1)^2) dx=int (u+1)^2/sqrt(1-u^2) du`

Apply FOIL method on `(u+1)^2` , we get:

`(u+1)^2 = (u+1) *(u+1)`

               `= u*u +u*1 + 1*u +1*1`

              `= u^2 +u+u+1`

              `= u^2+2u +1`

Plug-in `(u+1)^2= u^2+2u +1` on the integral, we get:

`int (u+1)^2/sqrt(1-u^2) dx =int (u^2+2u +1)/sqrt(1-u^2) du`

 Apply the basic integration property: `int (u+v+w) dx = int (u) dx + int (v) dx+int (w) dx` .      

`int (u^2+2u +1)/sqrt(1-u^2) du=int u^2/sqrt(1-u^2) du +int (2u)/sqrt(1-u^2) du+int 1/sqrt(1-u^2) du`

Each integral resembles formula from integration table for rational function with roots. For the first integral, we follow: `int (x^2 dx)/sqrt(a^2-x^2) =-(xsqrt(a^2-x^2))/2 +(a^2arcsin(x/a))/2 +C` .

Then,

`int u^2/sqrt(1-u^2) du =-(usqrt(1-u^2))/2 +(1arcsin(u/1))/2`

                       ` =-(usqrt(1-u^2))/2 +arcsin(u)/2`

For second integral,  we follow:  `int x/sqrt(a^2-x^2)dx= -sqrt(a^2-x^2)+C` .

`int (2u)/sqrt(1-u^2) du =2int u/sqrt(1-u^2) du`

                         `=2 *[-sqrt(1-u^2)]`

                          `=-2sqrt(1-u^2)`

For the third integral, we follow:  `int dx/(a^2-x^2)dx=arcsin(x/a)+C` .

`int 1/sqrt(1-u^2) du = arcsin(u/1) or arcsin(u)`

Combining the results, we get:

`int (u^2+2u +1)/sqrt(1-u^2) du=-(usqrt(1-u^2))/2 +arcsin(u)/2-2sqrt(1-u^2)+arcsin(u) +C`

 Plug-in `u = x-1` , we get the indefinite integral as:

`int x^2/sqrt(2x-x^2) dx`

`=-((x-1)sqrt(1-(x-1)^2))/2 +arcsin(x-1)/2-2sqrt(1-(x-1)^2)+arcsin(x-1) +C`

Recall `1-(x-1)^2 = 2x-x^2` then  the integral becomes:

`int x^2/sqrt(2x-x^2)dx`

`= (( -x+1)sqrt(2x-x^2))/2 +arcsin(x-1)/2-(4sqrt(2x-x^2))/2+(2arcsin(x-1))/2 +C`

`= [arcsin(x-1) + 2arcsin(x-1)]/2 + [( -x+1)sqrt(2x-x^2)-4sqrt(2x-x^2)]/2+C`

`=(3arcsin(x-1))/2 + ((-x-3)sqrt(2x-x^2))/2 +C`

`=(3arcsin(x-1))/2 +((-1)(x+3)sqrt(2x-x^2))/2 +C`

`=(3arcsin(x-1))/2-((x+3)sqrt(2x-x^2))/2 +C`

or  `(3arcsin(x-1))/2-(xsqrt(2x-x^2))/2 -(3sqrt(2x-x^2))/2+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial