You may rebuild the structure you find at denominator, such that:
`int (x^2-3x+7)/((x^2-4x+6)^2)dx = int ((x^2-4x+6) + x + 1)/((x^2-4x+6)^2)dx`
Separate into two integrals:
`int (x^2-4x+6)/((x^2-4x+6)^2)dx + int (x + 1)/((x^2-4x+6)^2)dx`
Take the first integral and reduce like terms:
`int (x^2-4x+6)/((x^2-4x+6)^2)dx = int 1/((x^2-4x+6))dx `
You may write `x^2 - 4x + 6 = x^2 - 4x + 4 + 2 = (x- 2)^2 + 2`
`int 1/((x^2-4x+6))dx= int 1/((x- 2)^2 + 2)dx = sqrt2/2 arctan ((x - 2)/sqrt2) + c`
You need to take the integral` int (x + 1)/((x^2-4x+6)^2)dx ` and to separate it into two simpler integrals:
`int (x + 1)/((x^2-4x+6)^2)dx = int x/((x^2-4x+6)^2)dx + int...
(The entire section contains 351 words.)
Unlock This Answer Now
Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.
Already a member? Log in here.