Given ,
`int sqrt(1-x^2)/x^4 dx`
By applying Integration by parts we can solve the given integral
so,
let `u= sqrt(1-x^2)` `,v' = (1/x^4) `
=>` u' = (sqrt(1-x^2) )'`
=> =`d/dx (sqrt(1-x^2)) `
let `t=1-x^2 `
so,
`d/dx (sqrt(1-x^2))`
=`d/dx (sqrt(t))`
= `d/(dt) sqrt(t) * d/dx (t)` [as `d/dx f(t) = d/(dt) f(t) (dt)/dx` ]
= `[(1/2)t^((1/2)-1) ]*(d/dx (1-x^2))`
= `[(1/2)t^(-1/2)]*(-2x)`
=`[1/(2sqrt(1-x^2 ))]*(-2x)`
=`-x/sqrt(1-x^2)`
so, `u' = -x/sqrt(1-x^2)` and as ` v'=(1/x^4)` so
`v = int 1/x^4 dx `
= `int x^(-4) dx`
= `(x^(-4+1))/(-4+1) `
=`(x^(-3))/(-3)`
= `-(1/(3x^3))`
so , let us see the values altogether.
`u= sqrt(1-x^2) ,u' = -x/sqrt(1-x^2)` and` v' = (1/x^4) ,v=-(1/(3x^3))`
Now ,by applying the integration by parts `int uv' ` is given as
`int uv' = uv - int u'v`
then,
`int sqrt(1-x^2)/x^4 dx `
= `(sqrt(1-x^2)) (-(1/(3x^3))) - int (-x/sqrt(1-x^2))(-(1/(3x^3))) dx `
= `(sqrt(1-x^2)) (-(1/(3x^3))) -(- int (-x/sqrt(1-x^2))((1/(3x^3))) dx) `
=` (sqrt(1-x^2)) (-(1/(3x^3))) - int (x/sqrt(1-x^2))((1/(3x^3))) dx `
= `-(sqrt(1-x^2)) ((1/(3x^3))) - int (x/sqrt(1-x^2))((1/(3x^3))) dx-----(1)`
Now let us solve ,
`int (x/sqrt(1-x^2))((1/(3x^3))) dx`
=`int (1/sqrt(1-x^2))((1/(3x^2))) dx`
=`(1/3)int (1/sqrt(1-x^2))((1/(x^2))) dx`
=`(1/3)int (1/((x^2)sqrt(1-x^2))) dx`
This integral can be solve by using the Trigonometric substitution(Trig substitution)
when the integrals containing `sqrt(a-bx^2)`then we have to take `x=sqrt(a/b) sin(t)`to solve the integral easily
so here , For
`(1/3)int (1/((x^2)sqrt(1-x^2))) dx------(2)`
`x` is given as
`x= sqrt(1/1) sin(t) = sin(t)`
as `x= sin(t) `
`=>` `dx= cos(t) dt`
now substituting the value of `x` in `(2)` we get
`(1/3)int (1/((x^2)sqrt(1-x^2))) dx`
=`(1/3)int (1/(((sin(t))^2)sqrt(1-(sin(t))^2))) (cos(t) dt)`
= `(1/3)int (1/(((sin(t))^2)sqrt(cos(t))^2))) (cos(t) dt)`
=`(1/3)int (1/(((sin(t))^2)*(cos(t)))) (cos(t) dt)`
=`(1/3)int 1/(((sin(t))^2)) dt`
=`(1/3)int (csc(t))^2 dt `
= `(-1/3) cot(t) +c`
=` (-1/3) cot(arcsin(x)) +c ---(3)`
[since` x= sin(t) => ` `t= arcsin(x)`]
Now substituting (3) in (1) we get
(1) =>
`-(sqrt(1-x^2)) ((1/(3x^3))) - int (x/sqrt(1-x^2))((1/(3x^3))) dx`
=`-(sqrt(1-x^2)) ((1/(3x^3))) - ((-1/3) cot(arcsin(x)) +c)`
=`-(sqrt(1-x^2)) ((1/(3x^3)))+(1/3) cot(arcsin(x)) +c`
=`(1/3) cot(arcsin(x))- (((sqrt(1-x^2))/(3x^3))) +c----(4)`
`cot(t)` in terms of `sin(t)` can be given as follows
`cot(t) = cos(t)/sin(t) = sqrt(1-(sin(t))^2)/sin(t)`
so,
`cot(arcsin(x)) = sqrt(1-(sin(arcsin(x)))^2)/sin(arcsin(x)) = sqrt(1-x^2)/x`
substituting the above in `(4)` we get
`(1/3) cot(arcsin(x))- (((sqrt(1-x^2))/(3x^3))) +c`
=`(1/3) (sqrt(1-x^2)/x)- (((sqrt(1-x^2))/(3x^3))) +c`
=`(sqrt(1-x^2)/(3x))- (((sqrt(1-x^2))/(3x^3))) +c`
so,
`int sqrt(1-x^2)/x^4 dx`
=`(sqrt(1-x^2)/(3x))- sqrt(1-x^2)/(3x^3)+c`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.