`intsec^5(x)tan^3(x)dx`
Let's rewrite the integral as:
`intsec^5(x)tan^3(x)dx=intsec^5(x)tan^2(x)tan(x)dx`
Now using the trigonometric identity:`tan^2(x)=sec^2(x)-1`
`=intsec^5(x)(sec^2(x)-1)tan(x)dx`
`=intsec^4(x)(sec^2(x)-1)sec(x)tan(x)dx`
Now apply the integral substitution:`u=sec(x)`
`du=sec(x)tan(x)dx`
`=intu^4(u^2-1)du`
`=int(u^6-u^4)du`
apply the sum rule,
`=intu^6du-intu^4du`
`=(u^(6+1)/(6+1))-(u^(4+1)/(4+1))`
`=u^7/7-u^5/5`
substitute back `u=sec(x)` and add a constant C to the solution,
`=(sec^7(x))/7-(sec^5(x))/5+C`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.