Given to solve
`int sec^4(2x)dx`
let `u= 2x`
=> `du = 2dx => dx = (1/2)du`
so,
`int sec^4(2x)dx`
= `int sec^4(u) (1/2) du`
=` (1/2) int sec^4(u) du`
let us sovle
`int sec^4(u) du`
as by the formulae
`int sec^n (x) dx `
= `(sec^(n-1) (x) (sinx))/(n-1) +((n-2)/(n-1))*(int sec^(n-2) (x) dx)`
so,
`int sec^4(u) du `
=`(sec^(4-1) (u) (sin u))/(4-1) +((4-2)/(4-1))*(int sec^(4-2) (u) du)`
=`(sec^(3) (u) (sin u))/(3) +(2/3)*(int sec^(2) (u) du)`
`= (sec^(3) (u) (sin u))/(3) +(2/3)*(tan u)`
so,
`int sec^4(2x)dx`
= `(1/2) int sec^4(u) du`
=`(1/2)[(sec^(3) (u) (sin u))/(3) +(2/3)*(tan u)]`
but `u= 2x`
so,
`(1/2)[(sec^(3) (u) (sin u))/(3) +(2/3)*(tan u)]`
= `(1/2)[(sec^(3) (2x) (sin (2x)))/(3) +(2/3)*(tan (2x))]`
so,
`int sec^4(2x)dx `
`=(1/2)[(sec^(3) (2x) (sin (2x)))/(3) +(2/3)*(tan (2x))] +c`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.