`int sec^3 (pix) dx` Find the indefinite integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Indefinite integrals are written in the form of `int f(x) dx = F(x) +C`

 where: `f(x)` as the integrand

           `F(x)` as the anti-derivative function 

           `C`  as the arbitrary constant known as constant of integration

For the given  integral problem `int sec^3(pix) dx` , we may evaluate this using u-substitution.

Let: `u = pix` then `du = pi dx` or  `(du)/pi =dx` .

The integral becomes:

`int sec^3(pix) dx =int sec^3(u) * (du)/pi`

 Apply the basic properties of integration: `int c*f(x) dx= c int f(x) dx` .

`int sec^3(u) * (du)/pi =1/piint sec^3(u) du`

Apply integration formula for secant function:

`int sec^n(x) dx = (sec^(n-1)(x)sin(x))/(n-1) + (n-2)/(n-1) int sec^(n-2)(x) dx`

We get:

`1/piint sec^3(u) du =1/pi [(sec^(3-1)(u)sin(u))/(3-1) + (3-2)/(3-1) int sec^(3-2)(u) du]`

        `=1/pi [(sec^2(u)sin(u))/(2) + (1)/(2) int sec^(1)(u) du]`

For the integral of  `int sec^(1)(u) du` or  `int sec^(u) du` , we may apply `int sec(theta) d theta = ln(sec(theta)+tan(theta))+C` .

Then,`int sec^(u) du =ln(sec(u)+tan(u))+C`

The complete indefinite integral will be:

`1/piint sec^3(u) du =1/pi [(sec^2(u)sin(u))/(3-1) + (1)/(2) int sec^(1)(u) du]`

           `=1/pi [(sec^2(u)sin(u))/(2) + (1)/(2)[ln(sec(u)+tan(u))]]+C`

           `=1/pi [(sec^2(u)sin(u))/2+ln(sec(u)+tan(u))/2]+C`

           `=(sec^2(u)sin(u))/(2pi)+ln(sec(u)+tan(u))/(2pi)+C`

          or  `tan(u)/(2picos(u)) + 1/(2pi)ln((1+sin(u))/cos(u))+C`

Plug-in `u = pix` , we get the final indefinite integral as:

`int sec^3(pix) dx=(sec^2(pix)sin(pix))/(2pi)+ln(sec(pix)+tan(pix))/(2pi)+C`

                        or `tan(pix)/(2picos(pix)) + 1/(2pi)ln((1+sin(pix))/cos(pix))+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team