Indefinite integrals are written in the form of `int f(x) dx = F(x) +C`
where: `f(x)` as the integrand
`F(x)` as the anti-derivative function
`C` as the arbitrary constant known as constant of integration
For the given integral problem `int sec^3(pix) dx` , we may evaluate this using u-substitution.
Let: `u = pix` then `du = pi dx` or `(du)/pi =dx` .
The integral becomes:
`int sec^3(pix) dx =int sec^3(u) * (du)/pi`
Apply the basic properties of integration: `int c*f(x) dx= c int f(x) dx` .
`int sec^3(u) * (du)/pi =1/piint sec^3(u) du`
Apply integration formula for secant function:
`int sec^n(x) dx = (sec^(n-1)(x)sin(x))/(n-1) + (n-2)/(n-1) int sec^(n-2)(x) dx`
We get:
`1/piint sec^3(u) du =1/pi [(sec^(3-1)(u)sin(u))/(3-1) + (3-2)/(3-1) int sec^(3-2)(u) du]`
`=1/pi [(sec^2(u)sin(u))/(2) + (1)/(2) int sec^(1)(u) du]`
For the integral of `int sec^(1)(u) du` or `int sec^(u) du` , we may apply `int sec(theta) d theta = ln(sec(theta)+tan(theta))+C` .
Then,`int sec^(u) du =ln(sec(u)+tan(u))+C`
The complete indefinite integral will be:
`1/piint sec^3(u) du =1/pi [(sec^2(u)sin(u))/(3-1) + (1)/(2) int sec^(1)(u) du]`
`=1/pi [(sec^2(u)sin(u))/(2) + (1)/(2)[ln(sec(u)+tan(u))]]+C`
`=1/pi [(sec^2(u)sin(u))/2+ln(sec(u)+tan(u))/2]+C`
`=(sec^2(u)sin(u))/(2pi)+ln(sec(u)+tan(u))/(2pi)+C`
or `tan(u)/(2picos(u)) + 1/(2pi)ln((1+sin(u))/cos(u))+C`
Plug-in `u = pix` , we get the final indefinite integral as:
`int sec^3(pix) dx=(sec^2(pix)sin(pix))/(2pi)+ln(sec(pix)+tan(pix))/(2pi)+C`
or `tan(pix)/(2picos(pix)) + 1/(2pi)ln((1+sin(pix))/cos(pix))+C`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.