`int (sec^2(theta) - sin(theta)) dtheta` Find the indefinite integral.

Textbook Question

Chapter 4, 4.1 - Problem 29 - Calculus of a Single Variable (10th Edition, Ron Larson).
See all solutions for this textbook.

1 Answer | Add Yours

sciencesolve's profile pic

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted on

You need to evaluate the indefinite integral, such that:

`int(sec^2 theta - sin theta) d theta = int sec^2 theta d theta - int sin theta d theta`

`int(sec^2 theta - sin theta) d theta = int 1/(cos^2 theta) d theta + cos theta + c`

You need to remember that `1/(cos^2 theta) = (tan theta)'`

`int(sec^2 theta - sin theta) d theta =tan theta + cos theta + c`

Hence, evaluating the indefinite integral yields `int(sec^2 theta - sin theta) d theta = tan theta + cos theta + c`

We’ve answered 319,622 questions. We can answer yours, too.

Ask a question