`int e^xsqrt(1-e^(2x)) dx` Find the indefinite integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Recall that indefinite integral follows the formula: `int f(x) dx = F(x) +C`

 where: `f(x)` as the integrand

           `F(x)` as the anti-derivative function 

           `C`  as the arbitrary constant known as constant of integration

For the given problem `int e^xsqrt(1-e^(2x))dx` , it resembles one of the formula from integration table.  We may apply the integral formula for function with roots as:

`int sqrt(a^2-u^2)du = 1/2u*sqrt(a^2-u^2)+1/2a^2arctan(u/sqrt(a^2-u^2))+C`

For easier comparison, we may apply u-substitution by letting `u =e^x` then `du =e^x dx` or `(du)/e^x = dx` .

Note that `u= e^x` then  `(du)/e^x = dx`  becomes  `(du)/u = dx`

Plug-in the values on the integral problem, we get:

`int e^xsqrt(1-e^(2x))dx=int usqrt(1-u^2)*(du)/u`

                              `= intsqrt(1-u^2)du`

Apply aforementioned integral formula for function with roots where `a^2=1`  , we get:

`intsqrt(1-u^2)du =1/2u*sqrt(1-u^2)+1/2*1*arctan(u/sqrt(1-u^2))+C`

                  `=1/2usqrt(1-u^2)+1/2arctan(u/sqrt(1-u^2))+C`

Plug-in `u = e^x` on `1/2usqrt(1-u^2)+1/2arctan(u/sqrt(1-u^2))+C` , we get the indefinite integral as:

`int e^xsqrt(1-e^(2x))dx=1/2e^xsqrt(1-(e^x)^2)+1/2arctan(e^x/sqrt(1-(e^x)^2))+C`

                            `=1/2e^xsqrt(1-e^(2x))+1/2arctan(e^x/sqrt(1-e^(2x)))+C`

                           `=(e^xsqrt(1-e^(2x)))/2+arctan(e^x/sqrt(1-e^(2x)))/2+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team