`int costheta/(3+2sintheta+sin^2theta) d theta` Use integration tables to find the indefinite integral.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Indefinite integral are written in the form of `int f(x) dx = F(x) +C`

 where: `f(x) ` as the integrand

           `F(x) ` as the anti-derivative function 

           `C`  as the arbitrary constant known as constant of integration

The evaluate the given integral problem: `int cos(theta)/(3+2sin(theta)+sin^2(theta)) d theta` , we may apply u-substitution by letting: `u =sin(theta)` then `du = cos(x) dx` .

Plug-in `u =sin(theta)` then `du = cos(x) dx` , the integral becomes:

`int cos(theta)/(3+2sin(theta)+sin^2(theta)) d theta =int (cos(theta) d theta)/(3+2sin(theta)+sin^2(theta))`

`=int (du)/(3+2u+u^2) orint (du)/(u^2+2u+3)`

It resembles a formula from table of integrals:

`int 1/(ax^2+bx+c) dx = 2/sqrt(4ac-b^2)arctan((2ax+b)/sqrt(4ac-b^2)) +C`

By comparing `ax^2+bx+c` with `u^2+2u+3` , we have: `a=1` , `b =2`and `c=3` .

Plug-in the values on the integral formula, we get:

`int (du)/(u^2+2u+3) =2/sqrt(4(1)(3)-(2)^2)arctan((2(1)u+2)/sqrt(4(1)(3)-(2)^2)) +C`

`=2/sqrt(12-4)arctan((2u+2)/sqrt(12-4)) +C`

`=2/sqrt(8)arctan((2u+2)/sqrt(8)) +C`

`=2/(2sqrt(2))arctan(2(u+1)/(2sqrt(2))) +C`

`= 1/sqrt(2)arctan((u+1)/sqrt(2))+C`

Plug-in ` u =sin(theta)` on `1/sqrt(2)arctan((u+1)/sqrt(2))+C` , we get the indefinite integral as:

`int cos(theta)/(3+2sin(theta)+sin^2(theta)) d theta= 1/sqrt(2)arctan((sin(theta)+1)/sqrt(2))+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team