Recall that indefinite integral follows `int f(x) dx = F(x) +C` where:
`f(x)` as the integrand function
`F(x)` as the antiderivative of `f(x)`
`C` as the constant of integration.
The given integral problem: `int arcsec(2x)dx` resembles one of the formulas from the integration table. We follow the integral formula for inverse secant function as:
`int arcsec(u) du =u*arcsec(u) - ln|u+sqrt(u^2-1)|+C `
or `u*arcsec(u)-cosh^(-1)|x|+C`
For easier comparison, we may apply u-substitution by letting: `u = 2x` then `du = 2 dx` or `(du)/2 =dx` .
Plug-in the values, we get:
`int arcsec(2x)dx=int arcsec(u) * (du)/2`
Apply the basic integration property: `int c*f(x) dx = c int f(x) dx` .
`int arcsec(u) * (du)/2= 1/2int arcsec(u) du`
Apply aforementioned integral formula for inverse secant function:
`1/2int arcsec(u) du =1/2*[u*arcsec(u) - ln|u+sqrt(u^2-1)|]+C`
`=(u*arcsec(u))/2 -( ln|u+sqrt(u^2-1)|)/2+C`
Plug-in `u =2x` on `(u*arcsec(u))/2 -( ln|u+sqrt(u^2-1)|)/2+C` , we get the indefinite integral as:
`int arcsec(2x)dx =(2x*arcsec(2x))/2 -(ln|2x+sqrt((2x)^2-1)|)/2+C`
`=xarcsec(2x) -(ln|2x+sqrt(4x^2-1)|)/2+C`
Another form of indefinite integral:
`1/2int arcsec(u) du= 1/2 *[u*arcsec(u)-cosh^(-1)|x|]+C`
`=(u*arcsec(u))/2-(cosh^(-1)|x|)/2+C`
Plug-in `u =2x` on `(u*arcsec(u))/2-(cosh^(-1)|x|)/2+C` , we get:
`int arcsec(2x)dx =(2x*arcsec(2x))/2-(cosh^(-1)|2x|)/2+C`
` =x*arcsec(2x)-(cosh^(-1)|2x|)/2+C`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.