`int arcsec(2x) dx` Find the indefinite integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Recall that indefinite integral follows `int f(x) dx = F(x) +C` where:

`f(x)` as the integrand function

`F(x)` as the antiderivative of `f(x)`

`C` as the constant of integration.

The given  integral problem: `int arcsec(2x)dx` resembles one of the formulas from the integration table. We follow the integral formula for inverse secant function as:

`int arcsec(u) du =u*arcsec(u) - ln|u+sqrt(u^2-1)|+C `

                       or    `u*arcsec(u)-cosh^(-1)|x|+C`

For easier comparison, we may apply u-substitution by letting: `u = 2x` then `du = 2 dx` or `(du)/2 =dx` .

Plug-in the values, we get:

`int arcsec(2x)dx=int arcsec(u) * (du)/2`

Apply the basic integration property: `int c*f(x) dx = c int f(x) dx` .

`int arcsec(u) * (du)/2= 1/2int arcsec(u) du`

Apply aforementioned integral formula for inverse secant function:

`1/2int arcsec(u) du =1/2*[u*arcsec(u) - ln|u+sqrt(u^2-1)|]+C`

                                   `=(u*arcsec(u))/2 -( ln|u+sqrt(u^2-1)|)/2+C`

Plug-in `u =2x` on `(u*arcsec(u))/2 -( ln|u+sqrt(u^2-1)|)/2+C` , we get the indefinite integral as:

`int arcsec(2x)dx =(2x*arcsec(2x))/2 -(ln|2x+sqrt((2x)^2-1)|)/2+C`

                                   `=xarcsec(2x) -(ln|2x+sqrt(4x^2-1)|)/2+C`

  

Another form of indefinite integral:

`1/2int arcsec(u) du= 1/2 *[u*arcsec(u)-cosh^(-1)|x|]+C`

                              `=(u*arcsec(u))/2-(cosh^(-1)|x|)/2+C`

Plug-in `u =2x` on  `(u*arcsec(u))/2-(cosh^(-1)|x|)/2+C`  , we get:

`int arcsec(2x)dx =(2x*arcsec(2x))/2-(cosh^(-1)|2x|)/2+C`

                                   ` =x*arcsec(2x)-(cosh^(-1)|2x|)/2+C`

 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team