`int (6x)/(x^3-8) dx` Use partial fractions to find the indefinite integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

For the given integral problem: `int (6x)/(x^3-8)dx` , we may partial fraction decomposition to expand the integrand: `f(x)=(6x)/(x^3-8)` . 

The pattern on setting up partial fractions will depend on the factors  of the  denominator. For the given problem,  the denominator is in a form of difference of perfect cube :  `x^3 -y^3 = (x-y)(x^2+xy+y^2)`

Applying the special factoring on `(x^3-8)` , we get: 

`(x^3-8) =(x^3-2^3)`



For the linear factor `(x-2)` , we will have partial fraction:` A/(x-2)` .

For the quadratic factor `(x^2+2x+4)` , we will have partial fraction: `(Bx+C)/(x^2+2x+4)` .

The integrand becomes:

`(6x)/(x^3-8) =A/(x-2) +(Bx+C)/(x^2+2x+4)`

Multiply both side by the `LCD =(x-2)(x^2+2x+4)` :

`((6x)/(x^3-8))*(x-2)(x^2+2x+4) =[ A/(x-2) +(Bx+C)/(x^2+2x+4)] *(x-2)(x^2+2x+4)`

`6x =A(x^2+2x+4) +(Bx+C)(x-2)`

We apply zero-factor property on `(x-2)(x^2+2x+4)` to solve for values we can assign on x.

`x-2 = 0` then `x=2`

`x^2+2x+4=0` then `x = -1+-sqrt(3)i`

To solve for `A` , we plug-in `x=2` :

`6*2 =A(2^2+2*2+4) +(B*2+C)(2-2)`

`12 =A(4+4+4) +(2B+C)(0)`

`12 = 12A +0`

`12/12 = (12A)/12`

`A =1`

To solve for `C` , plug-in `A=1`  and `x=0` so that `B*x` becomes `0` :

`6*0 =A(0^2+2*0+4) +(B*0+C)(0-2)`

`0 =1(0+0+4) +(0+C)(-2)`

`0=4 -2C`

`2C =4`



To solve for `B` , plug-in `A=1` , `C=2` , and `x=1` :

`6*1 =1(1^2+2*1+4) +(B*1+2)(1-2)`

`6 = 1+2+4 +(B+2)*(-1)`

`6 = 1+2+4 -B-2`

`6 = 5-B`

`6-5 =-B`


then `B =-1`

Plug-in `A = 1` , `B =-1,` and `C=2` , we get the partial fraction decomposition:

`int (6x)/(x^3-8) dx = int [ 1/(x-2) +(-x+2)/(x^2+2x+4)] dx`

                      `=int [ 1/(x-2) -x/(x^2+2x+4)+2/(x^2+2x+4)] dx`

Apply the basic integration property: `int (u+-v+-w) dx = int (u) dx +- int (v) dx+- int (w) dx` .

`int [ 1/(x-2) -x/(x^2+2x+4)+2/(x^2+2x+4)] dx =int 1/(x-2) dx- int x/(x^2+2x+4)dx+ int 2/(x^2+2x+4) dx`

For the first integral, we apply integration formula for logarithm: `int 1/u du = ln|u|+C` .

Let `u =x-2` then `du = dx`

`int 1/(x-2) dx =int 1/u du`

                 `= ln|u|`

                 ` = ln|x-2|`

For the second integral, we apply indefinite integration formula for rational function:

`int x/(ax^2+bx+c) dx =1/(2a)ln|ax^2+bx+c| -b/(asqrt(4ac-b^2))arctan((2ax+b)/sqrt(4ac-b^2))`

By comparing "`ax^2 +bx +c` " with "`x^2+2x+4` ", we determine the corresponding values: `a=1` , `b=2` , and `c=4` .

`int x/(x^2+2x+4)dx=1/(2*1)ln|1x^2+2x+4| -2/(1sqrt(4*1*4-2^2))arctan((2*1x+2)/sqrt(4*1*4-2^2))`




`=1/2ln|x^2+2x+4| -1/sqrt(3)arctan((x+1)/sqrt(3))`

`=(ln|x^2+2x+4|)/2 -(arctan((x+1)/sqrt(3)))/sqrt(3)`

Apply indefinite integration formula for rational function with `a=1` , `b=2` , and `c=4` :

`int 1/(ax^2+bx+c) dx = 2/sqrt(4ac-b^2)arctan((2ax+b)/sqrt(4ac-b^2)) +C`


`int 2/(x^2+2x+4) dx =2int 1/(x^2+2x+4) dx`


`= 2*[2/sqrt(16-4)arctan((2x+2)/sqrt(16-4))]`

`= 2*[2/(2sqrt(12))arctan((2x+2)/sqrt(12)) ]`

`= 2*[2/(2sqrt(3))arctan((2(x+1))/(2sqrt(3)))]`

`= 2*[1/sqrt(3)arctan((x+1)/sqrt(3))]`



Combining the results, we get the indefinite integral as: 

`int (6x)/(x^3-8) dx =ln|x-2| - [(ln|x^2+2x+4|)/2 -arctan((x+1)/sqrt(3))/sqrt(3)]+(2arctan((x+1)/sqrt(3)))/sqrt(3) +C`

`=ln|x-2| -(ln|x^2+2x+4|)/2 +(arctan((x+1)/sqrt(3)))/sqrt(3)+(2arctan((x+1)/sqrt(3)) )/sqrt(3)+C`

`= (2ln|x-2|-ln|x^2+2x+4|)/2 +(arctan((x+1)/sqrt(3))+2arctan((x+1)/sqrt(3)))/sqrt(3) +C`

`= (ln|(x-2)^2/(x^2+2x+4)|)/2+(3arctan((x+1)/sqrt(3)))/sqrt(3) +C`

`= (ln|(x^2-4x+4)/(x^2+2x+4)|)/2 +sqrt(3)arctan((sqrt(3)(x+1))/3)+C`

`= (ln|(x^2-4x+4)/(x^2+2x+4)|)/2 +sqrt(3)arctan((xsqrt(3)+sqrt(3))/3)+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial