`int (4x)/(x^3 + x^2 + x + 1) dx` Evaluate the integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles


To solve, apply the partial fraction decomposition.  

To do so, factor the denominator.

`int(4x)/(x^3+x^2+x+1)dx = int(4x)/((x+1)(x^2+1))dx`

Then, express the integrand as sum of proper rational expressions.


Multiply both sides by the LCD.

`4x =A(x^2+1)+(Bx+C)(x+1)`

`4x = Ax^2+A + Bx^2+Bx+Cx+C`

`4x=(A+B)x^2+(B+C)x + A+C`

Express the left side as a polynomial with degree 2.


For the two sides to be equal, the two polynomials should be the same. So set the coefficients of the two polynomials equal to each other.


`0=A+B`     (Let this be EQ1.)


`4=B+C`     (Let this be EQ2.)    


`0=A+C`    (Let this be EQ3.)

To solve for the values of A, B and C, isolate the A in EQ1 and the C in EQ2.





`4 = B + C`

`4 - B = C`

Plug-in them to EQ3.







And, plug-in the value of B to EQ1 and EQ2.


`0 =A + B`







So the partial fraction decomposition of the integrand is:

`(4x)/(x^3+x^2+x+1) = -2/(x+1) + (2x+2)/(x^2+1)=-2/(x+1)+(2x)/(x^2+1)+2/(x^2+1)`

Then, take the integral of it.

`int (4x)/(x^3+x^2+x+1)dx`

`=int (-2/(x+1)+ (2x)/(x^2+1) + 2/(x^2+1))dx`

`=int -2/(x+1)dx + int(2x)/(x^2+1)dx + int2/(x^2+1)dx`

`=-2ln|x+1| + ln|x^2+1|+2tan^(-1)(x) +C`


Therefore, `int (4x)/(x^3+x^2+x+1)dx=-2ln|x+1| + ln|x^2+1|+2tan^(-1)(x) +C` .         

Approved by eNotes Editorial Team

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial