Given to solve ,
`int 1/sqrt(16-x^2) dx`
using the Trig substitutions
for `sqrt(a-bx^2)`
`x= sqrt(a/b) sin(u)`
so for ,
`int 1/sqrt(16-x^2) dx` --------(1)
so , `x` can be
`x= sqrt(16/1) sin(u)`
= `4sin(u)`
=> `dx = 4cos(u) du`
so,for (1) we get
`int 1/sqrt(16-(4sin(u))^2) (4cos(u) du)`
=`int (4cos(u))/sqrt(16-16(sin(u))^2) du`
=` int (4cos(u))/(4sqrt(1-sin^2(u))) du`
= `int (4cos(u))/(4sqrt(cos^2(u))) du`
= `int (4cos(u))/(4cos(u)) du`
=` int (1) du`
=` u+c`
but `x= 4sin(u)`
=> `x/4 = sin(u)`
=> `u = arcsin(x/4)`
so ,
=> `u+c`
= `arcsin(x/4)+c`
so ,
`int 1/sqrt(16-x^2) dx = arcsin(x/4)+c`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.