`int 1/(2-3sin(theta)) d theta` Find or evaluate the integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`int1/(2-3sin(theta))d theta` 

Apply integral substitution:`u=tan(theta/2)`

`=>du=1/2sec^2(theta/2)d theta`

Use the trigonometric identity:`sec^2(x)=1+tan^2(x)`

`sec^2(theta/2)=1+tan^2(theta/2)`

`sec^2(theta/2)=1+u^2`

`du=1/2(1+u^2)d theta`

`d theta=2/(1+u^2)du`

From integral substitution:`u=tan(theta/2)`

`=>sin(theta/2)=u/sqrt(u^2+1)`

`cos(theta/2)=1/sqrt(u^2+1)`

`sin(theta)=2sin(theta/2)cos(theta/2)`

`sin(theta)=2(u/sqrt(u^2+1))(1/sqrt(u^2+1))`

`sin(theta)=(2u)/(u^2+1)`

Now the integrand can be written as :

`int1/(2-3sin(theta))d theta=int1/(2-3((2u)/(u^2+1)))(2/(1+u^2))du`

`=int1/((2(u^2+1)-3(2u))/(u^2+1))(2/(1+u^2))du`

`=int2/(2u^2+2-6u)du`

`=int2/(2(u^2-3u+1))du`

`=int1/(u^2-3u+1)du`

Complete the square of the denominator,

`=int1/((u-3/2)^2-5/4)du`

Again apply integral substitution:`v=u-3/2`

`=>dv=1du`

`=int1/(v^2-(sqrt(5)/2)^2)dv`

`=int1/(-1((sqrt(5)/2)^2-v^2))dv`

Take the constant out,

`=-1int1/((sqrt(5)/2)^2-v^2)dv`

Now use the standard table integral:`int1/(a^2-x^2)dx=1/(2a)ln|(a+x)/(a-x)|+C`

`=-1(1/(2(sqrt(5)/2))ln|(sqrt(5)/2+v)/(sqrt(5)/2-v)|)+C`

`=(-1/sqrt(5))ln|(sqrt(5)+2v)/(sqrt(5)-2v)|+C`

Substitute back `v=u-3/2`

`=(-1/sqrt(5))ln|(sqrt(5)+2(u-3/2))/(sqrt(5)-2(u-3/2))|+C`

`=(-1/sqrt(5))ln|(sqrt(5)+2u-6)/(sqrt(5)-2u+6)|+C`

Substitute back `u=tan(theta/2)`

`=(-1/sqrt(5))ln|(sqrt(5)+2tan(theta/2)-6)/(sqrt(5)-2tan(theta/2)+6)|+C`

 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial