`int_0^oo cos(pix) dx` Determine whether the integral diverges or converges. Evaluate the integral if it converges.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`int_0^infty cos (pi x)dx=`

Substitute `u=pi x` `=>` `du=pi dx` `=>` `dx=(du)/pi,` `u_l=pi cdot 0=0,` `u_u=pi cdot infty=infty.` (`u_l` and `u_u` are lower and upper bound respectively).

`1/pi int_0^infty cos u du=1/pi sin u|_0^infty=1/pi(lim_(u to infty)sin u-sin0)`

The integral does not converge (it diverges) because `lim_(u to infty) sin u` does not exist. 

The image below shows the graph of the function (blue) and area between it and `x`-axis representing the value of integral (green positive and red negative). We can see that any such integral (with infinite bound(s)) of periodic function will diverge.                                                                                     


This image has been Flagged as inappropriate Click to unflag
Image (1 of 1)
Approved by eNotes Editorial Team