You need to use the integration by parts for `int_0^(2pi) t^2*sin(2t)dt` such that:

`int udv = uv - int vdu`

`u = t^2 => du = 2tdt`

`dv = sin 2t=> v =(-cos 2t)/2`

`int_0^(2pi) t^2*sin(2t)dt = t^2*(-cos 2t)/2|_0^(2pi) + int_0^(2pi) t*cos 2t dt`

You need to use the integration by parts for `int_0^(2pi) t*cos 2t dt` such that:

`u = t=> du = dt`

`dv = cos 2t=> v = (sin 2t)/2`

`int_0^(2pi) t*cos 2t dt = t*(sin 2t)/2|_0^(2pi) - (1/2)int_0^(2pi) sin 2t dt`

`int_0^(2pi) t*cos 2t dt = t*(sin 2t)/2|_0^(2pi) + (cos 2t)/4|_0^(2pi) `

`int_0^(2pi) t^2*sin(2t)dt = t^2*(-cos 2t)/2|_0^(2pi) + t*(sin 2t)/2|_0^(2pi) + (cos 2t)/4|_0^(2pi)`

Using the fundamental theorem of calculus yields:

`int_0^(2pi) t^2*sin(2t)dt = (2pi)^2*(-cos 4pi)/2 + 0*(cos 0)/2 + 2pi*(sin 4pi)/2 - 0 + (cos 4pi)/4 - (cos 0)/4`

`int_0^(2pi) t^2*sin(2t)dt = -2(pi)^2 + 1/4 - 1/4`

`int_0^(2pi) t^2*sin(2t)dt = -2(pi)^2 `

**Hence, evaluating the integral, using integration by parts, yields `int_0^(2pi) t^2*sin(2t)dt = -2(pi)^2.` **

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now