`int_0^1 xe^(x^2) dx` Use integration tables to evaluate the definite integral.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

For the given problem: `int_0^1 xe^(x^2)` , we may first  solve for its indefinite integral. Indefinite integral are written in the form of `int f(x) dx = F(x) +C`

 where:` f(x)` as the integrand

           `F(x)` as the anti-derivative function 

           `C`  as the arbitrary constant known as constant of integration

We omit the arbitrary constant C when we have a boundary values: a to b. We follow formula: `int_a^b f(x) dx = F(x)|_a^b` .

 Form the table of integrals, we follow the indefinite integral formula for exponential function as:

`int xe^(-ax^2) dx = - 1/(2a)e^(-ax^2) +C`

By comparison of` -ax^2`  with` x^2 ` shows that we let `a= -1` .

Plug-in `a=-1` on `-ax^2` for checking, we get: `- (-1) x^2= +x^2` or `x^2` .

Plug-in `a=-1` on  integral formula, we get:

`int_0^1 xe^(x^2) =- 1/(2(-1))e^((-(-1)x^2))| _0^1`

              `=- 1/(-2)e^((1*x^2))| _0^1`

              ` = 1/2e^(x^2)| _0^1`

Applying definite integral formula: `F(x)|_a^b = F(b)-= F(a)` .

`1/2e^(x^2)| _0^1 =1/2e^(1^2) -1/2e^(0^2)`

             `=1/2e^(1) -1/2e^(0)`

             `=1/2e -1/2 *1`

             `= 1/2e -1/2 or 1/2(e-1)`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team