`int_0^0.6x^2/sqrt(9-25x^2)dx`
Let's first evaluate the indefinite integral by applying the integral substitution,
Let `x=3/5sin(u)`
`=>dx=3/5cos(u)du`
Plug in the above in the integral,
`intx^2/sqrt(9-25x^2)dx=int(3/5sin(u))^2/(sqrt(9-25(3/5sin(u))^2))(3/5cos(u))du`
`=int(27sin^2(u)cos(u))/(125sqrt(9-9sin^2(u)))du`
`=int(27sin^2(u)cos(u))/(125sqrt(9(1-sin^2(u))))du`
use the identity:`1-sin^2(x)=cos^2(x)` `<br> `
`=int(27sin^2(u)cos(u))/(125*3sqrt(cos^2(u)))du`
`=int(9sin^2(u)cos(u))/(125cos(u))du`
`=9/125intsin^2(u)du`
Now use the identity:`sin^2(x)=(1-cos(2x))/2`
`=9/125int(1-cos(2u))/2du`
`=9/250int(1-cos(2u))du`
`=9/250(int1du-intcos(2u)du)`
`=9/250(u-sin(2u)/2)`
We have taken `x=3/5sin(u)`
`=>u=arcsin(5/3x)`
Substitute back u and add a...
See
This Answer NowStart your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.
Already a member? Log in here.
`int_0^0.6x^2/sqrt(9-25x^2)dx`
Let's first evaluate the indefinite integral by applying the integral substitution,
Let `x=3/5sin(u)`
`=>dx=3/5cos(u)du`
Plug in the above in the integral,
`intx^2/sqrt(9-25x^2)dx=int(3/5sin(u))^2/(sqrt(9-25(3/5sin(u))^2))(3/5cos(u))du`
`=int(27sin^2(u)cos(u))/(125sqrt(9-9sin^2(u)))du`
`=int(27sin^2(u)cos(u))/(125sqrt(9(1-sin^2(u))))du`
use the identity:`1-sin^2(x)=cos^2(x)` `<br> `
`=int(27sin^2(u)cos(u))/(125*3sqrt(cos^2(u)))du`
`=int(9sin^2(u)cos(u))/(125cos(u))du`
`=9/125intsin^2(u)du`
Now use the identity:`sin^2(x)=(1-cos(2x))/2`
`=9/125int(1-cos(2u))/2du`
`=9/250int(1-cos(2u))du`
`=9/250(int1du-intcos(2u)du)`
`=9/250(u-sin(2u)/2)`
We have taken `x=3/5sin(u)`
`=>u=arcsin(5/3x)`
Substitute back u and add a constant C to the solution,
`=9/250(arcsin(5/3x)-1/2sin(2arcsin(5/3x)))+C`
Now let's evaluate the definite integral,
`int_0^0.6x^2/sqrt(9-25x^2)dx=[9/250(arcsin(5/3x)-1/2sin(2arcsin(5/3x)))]_0^0.6`
`=[9/250(arcsin(5/3*0.6)-1/2sin(2arcsin(5/3*0.6)))]-[9/250(arcsin(5/3*0)-1/2sin(2arcsin(5/3*0)))]`
`=[9/250(arcsin(1)-1/2sin(2arcsin(1)))]-[9/250(arcsin(0)-1/2sin(2arcsin(0)))]`
`=[9/250(pi/2-1/2sin(2*pi/2))]-[0]`
`=[9/250(pi/2-1/2sin(pi))]`
`=[9/250(pi/2-1/2*0)]`
`=(9pi)/500`
`=0.05655`
` `
` `
` `
` `
` `
You need to solve the definite integral, such that:
`sqrt(9 - 25x^2) = sqrt (9(1 - 25x^2/9))`
`sqrt (9(1 - 25x^2/9)) = 3sqrt(1 - 25x^2/9)`
You need to use the following substitution `(5x/3) = sin u => (5/3)dx = cos u du`
`x^2 = (9/25)*sin^2 u`
`int_0^(0.6) x^2/(3sqrt(1 - 25x^2/9)) dx = int_(u_1)^(u_2) ((9/25)*sin^2 u)/(3sqrt(1 - sin^2 u)) du`
Using the trigonometric formula` 1 - sin^2 u = cos ^2 u` yields:
`int_(u_1)^(u_2) ((3/25)*sin^2 u)/(sqrt(cos ^2 u)) du`
`int_(u_1)^(u_2) ((3/25)*sin^2 u)/(cos u) du = int_(u_1)^(u_2) ((3/25))tan u*sin u du`
Replace `tan u = (2u)/(1-u^2)` and `sin u = (2u)/(1+u^2), ` where `u = (tan(a/2)) `
`int_(u_1)^(u_2) ((3/25))tan u*sin u du = int_(u_1)^(u_2) ((3/25)) *(4u^2)/(1-u^4) * (1 + u^2) du = (12)/(25)*int_(u_1)^(u_2) u^2/(1 - u^2)`
`(12)/(25)*int_(u_1)^(u_2) u^2/(1 - u^2) = - (12)/(25)*int_(u_1)^(u_2) (1 - u^2 - 1)/(1 - u^2) `
`- (12)/(25)*int_(u_1)^(u_2) (1 - u^2 - 1)/(1 - u^2) = - (12)/(25)*(u - ln|(1-u)/(1+u)|)|_(u_1)^(u_2)`
`int_0^(0.6) x^2/(3sqrt(1 - 25x^2/9)) dx = - (12)/(25)*(arcsin(5x/3) - ln|(1-arcsin(5x/3))/(1+arcsin(5x/3))|)|_(0)^(0.6)`
`int_0^(0.6) x^2/(3sqrt(1 - 25x^2/9)) dx = - (12)/(25)*(arcsin 1) = (12)/(25)*(pi/2) = (6pi/25)`