# The indefinite integral: `int (dw)/w^3`

*print*Print*list*Cite

### 2 Answers

The integral `int (dw)/w^3` has to be determined.

`int (dw)/w^3`

=> `int w^-3 dw`

=> `(w^(-3+1))/(-3+1)`

=> `w^-2/-2`

=> `-1/(2*w^2)`

**The integral **`int (dw)/w^3 = -1/(2*w^2) + C`

Determine `int (dw)/w^2` :

`int (dw)/(w^2)=int w^(-2)dw` Use the general power rule:

`=(-1)w^(-1)+C`

`=-1/w +C`

Thus `int (dw)/(w^2)=-1/w + C`

-----------------------------

Check: if we take the derivative we should get the integrand back:

`d/(dw)( -1/w +C)=d/(dw)(-w^(-1))+d/(dw)(C)`

`=w^(-2)+0`

`=1/w^2` as required.