How would calculate the sum S=`sum_(p=1)^n` (p-1)!/(p+1)!?
- print Print
- list Cite
Expert Answers
calendarEducator since 2011
write5,348 answers
starTop subjects are Math, Science, and Business
You need to write the denominator in terms of numerator, using the following factorial relation, such that:
`(p+1)! = (p-1)!*p*(p+1)`
Replacing `(p-1)!*p*(p+1)` for `(p+1)!` in the given summation, yields:
`S = sum_(p=1)^n ((p-1)!)/((p-1)!*p*(p+1))`
Reducing duplicate factors yields:
`S = sum_(p=1)^n 1/(p(p+1))`
You need to use partial fraction expansion, such that:
`1/(p(p+1)) = a/p + b/(p+1)`
`1 = a(p+1) + bp`
`1 = ap + bp + a`
`1 = p(a+b) + a`
Equating the coefficients of like powers, yields:
`{(a + b = 0),(a = 1):} => a = -b => b = -1`
`1/(p(p+1)) = 1/p - 1/(p+1)`
Hence, replacing the difference `1/p - 1/(p+1)` for the fraction `1/(p(p+1))` , yields:
`S = sum_(p=1)^n (1/p - 1/(p+1))`
`S = sum_(p=1)^n (1/p) - sum_(p=1)^n (1/(p+1))`
You need to give values to p from 1 to n, such that:
`p = 1 => 1/1 - 1/2`
`p = 2 => 1/2 - 1/3`
`p = 3 => 1/3 - 1/4`
............................
`p = n => 1/n - 1/(n+1)`
Hence, evaluating the summation of terms, yields:
`S = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +... -1/n + 1/n - 1/(n+1)`
Reducing duplicate factors, yields:
`S = 1 - 1/(n + 1) => S = (n + 1 - 1)//(n + 1)`
`S = n/(n + 1)`
Hence, evaluating the given summation, using factorial relations and partial fraction expansion, yields `S = n/(n + 1)` .
Related Questions
- `sum_(n=1)^oo (-1)^n/sqrt(n)` Determine whether the series converges absolutely or...
- 1 Educator Answer
- `sum_(n=11)^30 n - sum_(n=1)^10 n` Find the partial sum.
- 1 Educator Answer
- SumCalculate the sum (1/1*2*3)+(1/2*3*4)+...+(1/n(n+1)(n+2))
- 1 Educator Answer
- `sum_(n=1)^50 n` Find the partial sum.
- 1 Educator Answer
- Calculate the limit n^2/( 1 + 2 + 3 + ... + n ), x->infinity
- 1 Educator Answer