How we simplify 2x/(x^2 -6x+9) - 1/(x+1) - 8/(x^2 -2x-3)
- print Print
- list Cite
Expert Answers
calendarEducator since 2010
write12,544 answers
starTop subjects are Math, Science, and Business
We have to simplify 2x/(x^2 -6x+9) - 1/(x+1) - 8/(x^2 -2x-3)
2x/(x^2 -6x+9)
=> 2x/(x^2 -3x - 3x+9)
=> 2x/ [x( x - 3) - 3(x- 3)]
=> 2x/ (x-3)^2
8/ ( x^2 - 2x - 3)
=> 8/( x^2 - 3x + x - 3)
=> 8/[ x(x - 3) + 1( x - 3)
=> 8/ ( x+1)(x-3)
So 2x/(x^2 -6x+9) - 1/(x+1) - 8/(x^2 -2x-3)
=> 2x/ (x-3)^2 -1/ (x+1) - 8/ ( x+1)(x-3)
=> [2x(x+1) - (x-3)^2 - 8(x-3)]/(x-3)^2(x+1)
=> (2x^2 + 2x - x^2 - 9 + 6x - 8x +24)/ (x-3)^2(x+1)
=> (x^2 + 15)/ (x-3)^2(x+1)
Therefore 2x/(x^2 -6x+9) - 1/(x+1) - 8/(x^2 -2x-3) = (x^2 + 15)/ (x-3)^2(x+1).
Related Questions
- solve the equation: 2^(2x-1)= 8^x
- 1 Educator Answer
- Simplify the product (x+1/x)(x^2+1/x^2)(x^4+1/x^4)(x^8+1/x^8)
- 1 Educator Answer
- Solve the equation x^3-3x^2-6x+8 = 0
- 1 Educator Answer
- Simplify (x-2)^2
- 1 Educator Answer
- Solve for x :- 1) x^(-3) + x^(-3/2) = 2 2) 6(4^x + 9^x) = 6^x(4+9)
- 1 Educator Answer
calendarEducator since 2008
write3,662 answers
starTop subjects are Math, Science, and Social Sciences
We are given the expression :
E = 2x/(x^2 - 6x +9) - 1/(x=1) - 8/(x^2-2x -3)
First let us simplify the denominator (x^2 - 6x +9) = (x-3)^2
Also we will factor the denominator (x^2 -2x+3) = (x-3)(x+1)
Now we will rewrite the expression:
==> E = 2x/(x-3)^2 - 1/(x+1) - 8/(x-3)(x+1)
Now we will determine the common denominator which is (x+1)(x-3)^2
==> E = [2x(x+1) - 1(x-3)^2 - 8(x-3) ] / (x+1)(x-3)^2
= ( 2x^2 + 2x -x + 3 - 8x + 24) / (x+1)(x-3)^2
= (2x^2 -7x + 27) / (x+1)(x-3)^2
==> E = (2x^2 - 7x + 27) / (x+1)(x-3)^2
To simplify: 2x/(x^2 -6x+9) - 1/(x+1) - 8/(x^2 -2x-3).
First we find the common denominators of x^2-6x+9, (x+1) and (x^2-2x-3).
x^2-6x+9 = (x-3)^2.
So the LCM of x^2-6x+9, (x+1) and (x^2-2x-3) is (x-3)^2(x+1).
Therefore
2x/(x^2-6x+9) = 2x/(x-3)^2 = 2x(x+1)/((x-3)^2(x+1)}...(1)
1/(x+1) = -(x-3)^2/{(x-3)^2(x+1) }...(2)
-8/(x^2-2x+3) = -8/(x-3)(x+1) = -8(x-3)/{(x-3)^2(x+1)}...(3)
(1)+(2)+3): 2x/(x^2 -6x+9) - 1/(x+1) - 8/(x^2 -2x-3) = { 2x(x+1)- (x-3)^2 -8((x-3)}/{(x-3)^2(x+1)}.
RHS numerator = 2x(x+1)-(x-3)^2-8(x-3) = 2x^2+2x-(x^2-6x+9)-8x+24 = 2x^2+2x-x^2+6x-9 - 8x + 24 = (2x^2-x^2)+(2x+6x-8x)-9 +24 = x^2 +15 .
Therefore 2x/(x^2 -6x+9) - 1/(x+1) - 8/(x^2 -2x-3 = (x^2+15)/(x-3)^2(x+1).
Student Answers