We have to simplify 2x/(x^2 -6x+9) - 1/(x+1) - 8/(x^2 -2x-3)
2x/(x^2 -6x+9)
=> 2x/(x^2 -3x - 3x+9)
=> 2x/ [x( x - 3) - 3(x- 3)]
=> 2x/ (x-3)^2
8/ ( x^2 - 2x - 3)
=> 8/( x^2 - 3x + x - 3)
=> 8/[ x(x - 3) + 1( x - 3)
=> 8/ ( x+1)(x-3)
So 2x/(x^2 -6x+9) - 1/(x+1) - 8/(x^2 -2x-3)
=> 2x/ (x-3)^2 -1/ (x+1) - 8/ ( x+1)(x-3)
=> [2x(x+1) - (x-3)^2 - 8(x-3)]/(x-3)^2(x+1)
=> (2x^2 + 2x - x^2 - 9 + 6x - 8x +24)/ (x-3)^2(x+1)
=> (x^2 + 15)/ (x-3)^2(x+1)
Therefore 2x/(x^2 -6x+9) - 1/(x+1) - 8/(x^2 -2x-3) = (x^2 + 15)/ (x-3)^2(x+1).
We are given the expression :
E = 2x/(x^2 - 6x +9) - 1/(x=1) - 8/(x^2-2x -3)
First let us simplify the denominator (x^2 - 6x +9) = (x-3)^2
Also we will factor the denominator (x^2 -2x+3) = (x-3)(x+1)
Now we will rewrite the expression:
==> E = 2x/(x-3)^2 - 1/(x+1) - 8/(x-3)(x+1)
Now we will determine the common denominator which is (x+1)(x-3)^2
==> E = [2x(x+1) - 1(x-3)^2 - 8(x-3) ] / (x+1)(x-3)^2
= ( 2x^2 + 2x -x + 3 - 8x + 24) / (x+1)(x-3)^2
= (2x^2 -7x + 27) / (x+1)(x-3)^2
==> E = (2x^2 - 7x + 27) / (x+1)(x-3)^2
We’ll help your grades soar
Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.
- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support
Already a member? Log in here.
Are you a teacher? Sign up now