To simplify the above expressions, start by expanding the binomials.
Note that we can expand the (a-b)^3 , (b-c)^3 , and (c-a)^3 using the special product formulas for a cube of a binomial.
The formula is: (x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3
- Expand: (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
- Expand: (b-c)^3 = b^3 - 3b^2c + 3bc^2 - c^3
- Expand: (c-a)^3 = c^3 - 3c^2a + 3ca^2 - a^3
= c^3 - 3ac^2 + 3a^2c - a^3
Also, expand -3(a-b)(b-c)(c-a) using distributive property.
- Multiply (a-b) and (b-c).
(a-b)(b-c) = ab - ac - b^2 - b(-c)
= ab - ac - b^2 + bc
- Then, multiply (ab - ac - b^2 + bc) and (c-a).
(c - a)(ab - ac - b^2 + bc) = abc - ac^2 - b^2c + bc^2 -a^2b
+ a^2c + ab^2 - abc
= -ac^2 - b^2c + bc^2 - a^2b +
a^2c + ab^2
- Then, multiply -3 and (-ac^2 - b^2c + bc^2 - a^2b + a^2c + ab^2).
-3(-ac^2 - b^2c + bc^2 - a^2b + a^2c + ab^2)
= 3ac^2 + 3b^2c - 3bc^2 + 3a^2b - 3a^2c - 3ab^2
Next, combine like terms of the above expanded expressions.
a^3 - 3a^2b + 3ab^2 - b^3
+ b^3 - 3b^2c + 3bc^2 - c^3
-a^3 +c^3 -3ac^2 +3a^2c
+ 3a^2b - 3ab^2 + 3b^2c - 3bc^2 +3ac^2 -3a^2c
---------------------------------------------------------------------
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0
Answer: 0
You should remember how to expand the cube of binomial such that:
`(a-b)^3 = a^3 - 3a^2*b + 3ab^2 - b^3`
`(a-b)^3 = a^3- b^3 - 3ab(a-b)`
`(b-c)^3 = b^3 - c^3 - 3bc(b-c) `
`(c-a)^3 = c^3 - a^3 - 3ac(c-a) `
Adding `(a-b)^3, (b-c)^3, (c-a)^3` yields:
`(a-b)^3 + (b-c)^3 + (c-a)^3 = a^3 - b^3 + b^3 - c^3 +c^3 - a^3 - 3(ab(a-b) + bc(b-c) + ac(c-a))`
Reducing like terms yields:
`(a-b)^3 + (b-c)^3 + (c-a)^3 = - 3(ab(a-b) + bc(b-c) + ac(c-a))`
Subtracting 3(a-b)(b-c)(c-a) yields:
`(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = - 3(ab(a-b) + bc(b-c) + ac(c-a)) - 3(a-b)(b-c)(c-a)`
Factoring out -3 yields:
`(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = - 3(ab(a-b) + bc(b-c) + ac(c-a) + (a-b)(b-c)(c-a))`
Opening the brackets to the right side yields:
`(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = -3(a^2b - ab^2 + b^2c - bc^2 + ac^2 - a^2c + (ab-ac-b^2+bc)(c-a))`
`(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = -3(a^2b - ab^2 + b^2c - bc^2 + ac^2 - a^2c + abc - a^2b - ac^2 + a^2c - b^2c + ab^2 + bc^2 - abc)`
Reducing like terms yields:
`(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = -3*0`
`(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = 0`
Hence, simplifying the given expression yields: `(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = 0.`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.