how to simplify:

(a-b)³ + (b-c)³ + (c-a)³ -3(a-b)(b-c)(c-a)?

 

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To simplify the above expressions, start by expanding the binomials.

Note that we  can expand the (a-b)^3 , (b-c)^3 , and (c-a)^3 using the special product formulas for a cube of a binomial.

The formula is:  (x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3

  • Expand: (a-b)^3  = a^3 - 3a^2b + 3ab^2 - b^3   
  • Expand: (b-c)^3  = b^3 - 3b^2c + 3bc^2 - c^3
  • Expand: (c-a)^3  = c^3 -  3c^2a + 3ca^2 - a^3  

                                 = c^3 - 3ac^2  + 3a^2c - a^3

Also, expand -3(a-b)(b-c)(c-a) using distributive property.

  • Multiply (a-b) and (b-c).

        (a-b)(b-c) = ab - ac - b^2 - b(-c)

                       = ab - ac - b^2 + bc

  • Then, multiply (ab - ac - b^2 + bc) and (c-a).

        (c - a)(ab - ac - b^2 + bc) = abc - ac^2 - b^2c + bc^2 -a^2b        

                                                 + a^2c + ab^2 - abc

                                              = -ac^2 - b^2c + bc^2 - a^2b +  

                                                  a^2c + ab^2 

  • Then, multiply -3 and (-ac^2 - b^2c + bc^2 - a^2b + a^2c +  ab^2).

        -3(-ac^2 - b^2c + bc^2 - a^2b + a^2c + ab^2)

        = 3ac^2 + 3b^2c - 3bc^2 + 3a^2b - 3a^2c - 3ab^2

 

Next, combine like terms of the above expanded expressions.       

a^3 - 3a^2b + 3ab^2 - b^3

                                + b^3 - 3b^2c + 3bc^2 - c^3

-a^3                                                           +c^3 -3ac^2 +3a^2c                                                             

      + 3a^2b - 3ab^2          + 3b^2c - 3bc^2         +3ac^2 -3a^2c           

---------------------------------------------------------------------

 0   +  0       + 0       + 0     + 0        + 0        + 0   + 0      + 0   


Answer:  0

 

Approved by eNotes Editorial
An illustration of the letter 'A' in a speech bubbles

You should remember how to expand the cube of binomial such that:

`(a-b)^3 = a^3 - 3a^2*b + 3ab^2 - b^3`

`(a-b)^3 = a^3- b^3 - 3ab(a-b)`

`(b-c)^3 = b^3 - c^3 - 3bc(b-c) `

`(c-a)^3 = c^3 - a^3 - 3ac(c-a) `

Adding `(a-b)^3, (b-c)^3, (c-a)^3`  yields:

`(a-b)^3 + (b-c)^3 + (c-a)^3 = a^3 - b^3 + b^3 - c^3 +c^3 - a^3 - 3(ab(a-b) + bc(b-c) + ac(c-a))`

Reducing like terms yields:

`(a-b)^3 + (b-c)^3 + (c-a)^3 = - 3(ab(a-b) + bc(b-c) + ac(c-a))`

Subtracting 3(a-b)(b-c)(c-a) yields:

`(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = - 3(ab(a-b) + bc(b-c) + ac(c-a)) - 3(a-b)(b-c)(c-a)`

Factoring out -3 yields:

`(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = - 3(ab(a-b) + bc(b-c) + ac(c-a) + (a-b)(b-c)(c-a))`

Opening the brackets to the right side yields:

`(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = -3(a^2b - ab^2 + b^2c - bc^2 + ac^2 - a^2c + (ab-ac-b^2+bc)(c-a))` 

`(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = -3(a^2b - ab^2 + b^2c - bc^2 + ac^2 - a^2c + abc - a^2b - ac^2 + a^2c - b^2c + ab^2 + bc^2 - abc)`

Reducing like terms yields:

`(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = -3*0`

`(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = 0`

Hence, simplifying the given expression yields: `(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = 0.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial