In order to determine how much work is done by the system we require two equations. The first equation is the equation for work:

W = F * d

Work is the amount of force applied over a certain distance. The unknown in this equation is the distance over which...

## See

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

In order to determine how much work is done by the system we require two equations. The first equation is the equation for work:

W = F * d

Work is the amount of force applied over a certain distance. The unknown in this equation is the distance over which the known force was applied.

In order to solve for d we call on a second equation which describes the relationship between the potential difference (deltaV), the electric field intensity (E), and the distance (d):

deltaV = -E * d

Substituting in the values we have we get:

11 = -(3.9x10^-3)*d

Rearranging for d:

d = -11/-3.9x10^-3

= 2820 m

Substituting what we have back into our first equation:

W = (2.8x10^4)(2820) = 7.9x10^7 Nm

Therefore, 7.9x10^7 Nm of work is done by the system.