How many solutions are there to   eq  x^2-13=0?

Expert Answers
sciencesolve eNotes educator| Certified Educator

Since the number of solutions to a polynomial equation is equal to the highest power of variable `x` , yields that the number of solutions to a quadratic equation is maximum 2, either both reals, or both imaginaries.

You should solve the equation to prove that there exists two real solutions, such that:

`x^2 - 13 = 0 => x^2 = 13 => x_(1,2) = +-sqrt 13`

Hence, evaluating the number of solutions to the quadratic equation yields that there exists two real solutions, `x = sqrt 13, x = -sqrt 13.`

Access hundreds of thousands of answers with a free trial.

Start Free Trial
Ask a Question