To do this without Calculus we use the two projectile motion equation:

R = VxCos(theta)T

H = VxSin(theta)T - 1/2 gT^2

Where R is maximum range, T is maximum time of flight, V is initial velocity and theta is the angle of launch.

Solving the first equation for T gives:

T = R/VCos(theta)

at R, H = 0, so we can plug T into second equation and solve for V:

0 = VSin(theta)R/Vcos(theta) - 1/2g (R/VCos(theta))^2

0 = RTan(theta) -1/2 g(R^2/V^2Cos^2(theta))

RTan(theta) = 1/2 g (R^2/V^2Cos^2(theta))

Bringing all but V^2 to the same side gives

1/V^2 = 2RTan(theta)Cos^2(theta)/(gR^2) = 2Sin(theta)Cos(theta)/(Rg)

You can now take the reciprocal of both sides of the equality and then the square root of both sides to solve for V.

With V, you can substitute into the equation for T to get the maximum time of flight. To get the time of flight for the maximum height, divide the maximum time in half.

V = sqareroot (Rg/2sin(theta)cos(theta))

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now