You need to use the linearity of integrals such that:
`int (x^2+2x+2)/(x^3 e^x) dx = int (x^2)/(x^3)e^(-x)dx + int (2x)/(x^3)*e^(-x)dx + int 2/x^3 e^(-x)dx`
`int (x^2+2x+2)/(x^3 e^x) dx = int 1/x e^(-x)dx + 2 int 1/x^2 e^(-x)dx + 2 int 1/x^3 e^(-x)dx`
You need to use integration by parts to solve `int 1/x e^(-x)dx` such that:
`int udv = uv - int vdu`
`u = 1/x => du = -1/x^2`
`dv = e^(-x) => v = -e^(-x)`
`int 1/x e^(-x)dx = -e^(-x)/x - int 1/x^2 e^(-x) dx`
`int (x^2+2x+2)/(x^3 e^x) dx = -e^(-x)/x - int 1/x^2 e^(-x) dx + 2 int 1/x^2 e^(-x)dx + 2 int 1/x^3 e^(-x)dx`
`int (x^2+2x+2)/(x^3 e^x) dx = -e^(-x)/x + int 1/x^2 e^(-x)dx + 2 int 1/x^3 e^(-x)dx `
You need to use integration by parts to solve `int 1/x^3 e^(-x)dx` such that:
`int 1/x^3 e^(-x)dx = -1/(2x^2) e^(-x) - (1/2)int 1/x^2 e^(-x)dx `
`u = e^(-x) => du = -e^(-x)`
`dv = 1/x^3 => v = -1/(2x^2)`
`int (x^2+2x+2)/(x^3 e^x) dx = -e^(-x)/x + int 1/x^2 e^(-x)dx -1/(x^2) e^(-x) - int 1/x^2 e^(-x)dx`
Reducing like terms yields:
`int (x^2+2x+2)/(x^3 e^x) dx = -e^(-x)/x -1/(x^2) e^(-x) + c`
`int (x^2+2x+2)/(x^3 e^x) dx = -e^(-x)/x(1 + 1/x) + c`
Hence, evaluating the given integral, using mostly integration by parts, `int (x^2+2x+2)/(x^3 e^x) dx = -e^(-x)/x(1 + 1/x) + c.`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.