# how to integrate    ( x^2+2x+2)/(x^3 e^x)

## Expert Answers You need to use the linearity of integrals such that:

int  (x^2+2x+2)/(x^3 e^x) dx = int (x^2)/(x^3)e^(-x)dx + int (2x)/(x^3)*e^(-x)dx + int 2/x^3 e^(-x)dx

int (x^2+2x+2)/(x^3 e^x) dx = int 1/x e^(-x)dx + 2 int 1/x^2 e^(-x)dx + 2 int 1/x^3 e^(-x)dx

You need to use integration by parts to solve int 1/x e^(-x)dx such that:

int udv = uv - int vdu

u = 1/x => du = -1/x^2

dv = e^(-x) => v = -e^(-x)

int 1/x e^(-x)dx = -e^(-x)/x - int 1/x^2 e^(-x) dx

int (x^2+2x+2)/(x^3 e^x) dx = -e^(-x)/x - int 1/x^2 e^(-x) dx + 2 int 1/x^2 e^(-x)dx + 2 int 1/x^3 e^(-x)dx

int (x^2+2x+2)/(x^3 e^x) dx = -e^(-x)/x + int 1/x^2 e^(-x)dx + 2 int 1/x^3 e^(-x)dx

You need to use integration by parts to solve int 1/x^3 e^(-x)dx  such that:

int 1/x^3 e^(-x)dx = -1/(2x^2) e^(-x) - (1/2)int 1/x^2 e^(-x)dx

u = e^(-x) => du = -e^(-x)

dv = 1/x^3 => v = -1/(2x^2)

int (x^2+2x+2)/(x^3 e^x) dx = -e^(-x)/x + int 1/x^2 e^(-x)dx -1/(x^2) e^(-x) - int 1/x^2 e^(-x)dx

Reducing like terms yields:

int (x^2+2x+2)/(x^3 e^x) dx = -e^(-x)/x -1/(x^2) e^(-x) + c

int (x^2+2x+2)/(x^3 e^x) dx = -e^(-x)/x(1 + 1/x) + c

Hence, evaluating the given integral, using mostly integration by parts, int (x^2+2x+2)/(x^3 e^x) dx = -e^(-x)/x(1 + 1/x) + c.

Approved by eNotes Editorial Team ## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

• 30,000+ book summaries
• 20% study tools discount
• Ad-free content
• PDF downloads
• 300,000+ answers
• 5-star customer support