how to integrate (x^2 +2x +2)/ (-x^2 e^x)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to use the linearity of integral such that:

`int (x^2 +2x +2)/(-x^2 e^x) dx = int x^2/(-x^2)*e^(-x)dx - 2 int x/(x^2)e^(-x)dx - 2 int 1/(x^2)e^(-x)dx`

`int (x^2 +2x +2)/(-x^2 e^x) dx = - int e^(-x)dx - 2 int 1/x*e^(-x)dx - 2 int 1/(x^2)*e^(-x)dx`

You need to solve the integral `int 1/x*e^(-x)dx`  using parts such that:

`int udv = uv - int vdu`

`u = 1/x => du = -1/x^2 dx`

`dv = e^(-x)dx => v = -e^(-x)`

`int 1/x*e^(-x)dx = -(e^(-x))/x - int 1/x^2*e^(-x)dx`

`int (x^2 +2x +2)/(-x^2 e^x) dx = e^(-x) + 2(e^(-x))/x + 2int 1/x^2*e^(-x)dx- 2 int 1/(x^2)*e^(-x)dx`

Reducing like terms yields:

`int (x^2 +2x +2)/(-x^2 e^x) dx = e^(-x) + 2(e^(-x))/x + c`

`int (x^2 +2x +2)/(-x^2 e^x) dx = e^(-x)(1 + 2/x) + c`

Hence, evaluating the given integral yields `int (x^2 +2x +2)/(-x^2 e^x) dx = e^(-x)(1 + 2/x) + c.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team