Write `int (cos2x)/(2e^x) dx = int (cos2x)/2e^(-x) dx`
Using the formula `cos2x = (e^(2ix) + e^(-2ix))/2` (ref Euler's formula)
we have
`int (cos2x)/(2e^x) dx = int (e^(2ix) + e^(-2ix))/4e^(-x) dx`
Multiplying out
`int (cos2x)/(2e^x) dx = 1/4(int e^((2i-1)x) dx + int e^(-(2i+1)x) dx)`
`= 1/4( 1/(2i-1)e^((2i-1)x)-1/(2i+1)e^(-(2i+1)x)) + C`
`= (e^(-x)/4)((2i+1)e^(2ix) - (2i-1)e^(-2ix))/((2i-1)(2i+1)) + C`
`= (e^(-x)/(4(4i^2-1)))((e^(2ix) + e^(-2ix)) +2i(e^(2ix)-e^(-2ix))) + C`
Using the above formula for `cos2x` and `sin2x = (e^(2ix) -e^(-2ix))/(2i)`
`int (cos2x)/(2e^x) dx = -e^(-x)/20(2cos2x + 4i^2sin2x) + C`
`= e^(-x)/10(2sin2x -cos2x) + C`
answer (using Euler's formula as an alternative to integration by parts)
`int (cos(2x))/(2e^x) dx`
`= int (cos(2x) e^(-x))/2 dx`
To integrate, use integration by parts. The formula is `int u dv = uv - int vdu` .
So let,
`u = (cos(2x))/2` and `dv= e^(-x)`
Then, determine du and v.
`du=1/2(-sin(2x))*2 dx` `v = int e^(-x) dx`
`du=-sin(2x) dx` `v=-e^(-x)`
Substitute u, v and du to the formula of integration by parts.
`int (cos(2x)e^(-x))/2dx = (cos(2x))/2*(-e^(-x)) - int (-e^(-x))(-sin(2x)dx)`
`= -(cos(2x)e^(-x))/2 - int sin(2x)e^(-x)dx`
To evaluate `int sin(2x)e^(-x) dx` , use integration by parts again.So let,
`u = sin(2x)` and `dv = e^(-x)dx`
Solve for du and v.
`du=cos(2x)*2dx` `v =int e^(-x)dx`
`du=2cos(2x)dx ` `v=-e^(-x)`
Substitute u, v and du to the formula of integration by parts.
`int (cos(2x)e^(-x))/2dx = -(cos(2x)e^(-x))/2 - [-sin(2x)e^(-x)+2int cos(2x)e^(-x)dx]`
`= -(cos(2x)e^(-x))/2 +sin(2x)e^(-x) -2intcos(2x)e^(-x)dx`
To have the same integrand, express `2int cos(2x)e^(-x) dx` as `4 int (cos(2x)e^(-x))/2 dx` .
`int (cos (2x)e^(-x))/2dx= -(cos(2x)e^(-x))/2 +sin(2x)e^(-x) -4int(cos(2x)e^(-x))/2dx`
Now that both sides have the same integrand `(cos(2x)e^(-x))/2` , bring together the integrals. So, add both sides by `4 int (cos(2x) e^(-x))/2dx` .
`int (cos (2x)e^(-x))/2dx+4int (cos(2x)e^(-x))/2 dx=-(cos(2x)e^(-x))/2 +sin(2x)e^(-x)`
`5int (cos(2x)e^(-x))/2 dx =-(cos(2x)e^(-x))/2 +sin(2x)e^(-x)`
To isolate `int (cos(2x)e^(-x))/2 dx` , divide both sides by 5.
`int (cos (2x)e^(-x))/2dx = [-(cos(2x)e^(-x))/2 +sin(2x)e^(-x)]/5`
`= -(cos(2x)e^(-x))/10 + ( sin(2x)e^(-x))/5`
`= (sin(2x)e^(-x))/5 - (cos(2x)e^(-x))/10`
Since we have an indefinite integral, then
`int (cos(2x))/(2e^x) dx=(sin(2x)e^(-x))/5 - (cos(2x)e^(-x))/10+C` .
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.