how to integrate cos(2x)/(2e^x) ?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Write `int (cos2x)/(2e^x) dx = int (cos2x)/2e^(-x) dx`

Using the formula `cos2x = (e^(2ix) + e^(-2ix))/2` (ref Euler's formula)

we have

`int (cos2x)/(2e^x) dx = int (e^(2ix) + e^(-2ix))/4e^(-x) dx`

Multiplying out

`int (cos2x)/(2e^x) dx = 1/4(int e^((2i-1)x) dx + int e^(-(2i+1)x) dx)`

`= 1/4( 1/(2i-1)e^((2i-1)x)-1/(2i+1)e^(-(2i+1)x)) + C`

`= (e^(-x)/4)((2i+1)e^(2ix) - (2i-1)e^(-2ix))/((2i-1)(2i+1)) + C`

`= (e^(-x)/(4(4i^2-1)))((e^(2ix) + e^(-2ix)) +2i(e^(2ix)-e^(-2ix))) + C`

Using the above formula for `cos2x` and `sin2x = (e^(2ix) -e^(-2ix))/(2i)`

`int (cos2x)/(2e^x) dx = -e^(-x)/20(2cos2x + 4i^2sin2x) + C`

`= e^(-x)/10(2sin2x -cos2x) + C`

answer (using Euler's formula as an alternative to integration by parts)

Approved by eNotes Editorial Team
An illustration of the letter 'A' in a speech bubbles

`int (cos(2x))/(2e^x) dx`

`= int (cos(2x) e^(-x))/2 dx`

To integrate, use integration by parts. The formula is `int u dv = uv - int vdu` .

So let,

`u = (cos(2x))/2`                     and             `dv= e^(-x)`

Then, determine du and v.

`du=1/2(-sin(2x))*2 dx`                         `v = int e^(-x) dx`

`du=-sin(2x) dx`                                 `v=-e^(-x)`

Substitute u, v and du to the formula of integration by parts.

`int (cos(2x)e^(-x))/2dx = (cos(2x))/2*(-e^(-x)) - int (-e^(-x))(-sin(2x)dx)`

                           `= -(cos(2x)e^(-x))/2 - int sin(2x)e^(-x)dx`

To evaluate `int sin(2x)e^(-x) dx` , use integration by parts again.So let,

`u = sin(2x)`                  and               `dv = e^(-x)dx`

Solve for du and v.

`du=cos(2x)*2dx`                              `v =int e^(-x)dx`  

`du=2cos(2x)dx `                                 `v=-e^(-x)`

Substitute u, v and du to the formula of integration by parts.

`int (cos(2x)e^(-x))/2dx = -(cos(2x)e^(-x))/2 - [-sin(2x)e^(-x)+2int cos(2x)e^(-x)dx]`

                                         

                         `= -(cos(2x)e^(-x))/2 +sin(2x)e^(-x) -2intcos(2x)e^(-x)dx`

To have the same integrand, express `2int cos(2x)e^(-x) dx` as `4 int (cos(2x)e^(-x))/2 dx` .

`int (cos (2x)e^(-x))/2dx= -(cos(2x)e^(-x))/2 +sin(2x)e^(-x) -4int(cos(2x)e^(-x))/2dx`

Now that both sides have the same integrand `(cos(2x)e^(-x))/2` , bring together the integrals. So, add both sides by `4 int (cos(2x) e^(-x))/2dx` .

`int (cos (2x)e^(-x))/2dx+4int (cos(2x)e^(-x))/2 dx=-(cos(2x)e^(-x))/2 +sin(2x)e^(-x)`

`5int (cos(2x)e^(-x))/2 dx =-(cos(2x)e^(-x))/2 +sin(2x)e^(-x)`

To isolate `int (cos(2x)e^(-x))/2 dx` , divide both sides by 5.

`int (cos (2x)e^(-x))/2dx = [-(cos(2x)e^(-x))/2 +sin(2x)e^(-x)]/5`

                           `= -(cos(2x)e^(-x))/10 + ( sin(2x)e^(-x))/5`

                           `= (sin(2x)e^(-x))/5 - (cos(2x)e^(-x))/10`

Since we have an indefinite integral, then

`int (cos(2x))/(2e^x) dx=(sin(2x)e^(-x))/5 - (cos(2x)e^(-x))/10+C` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team