How to find the values of t so the curve y= x^3 + 2x^2 + tx + 3 has one horizontal tangent line. Also, find x values where the tangnet line occurs.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Given the curve y= x^3 + 2x^2 + tx + 3

First we will determine the tangent line.

Since the tangent line is horizontal, then the slope is 0.

Now we need to find the point of tangent.

We will determine the first derivative.

==> y' = 3x^2 + 4x + t

==> 3x^2 + 4x + t = 0

Since the curve has only one tangent line, then the quadratic equation has one real solution. Therefore, the discriminant is 0.

==> b^2 - 4ac = 0

==> a= 3 b= 4 c = t

==> 16 - 4*3*t = 0

==> 16 - 12t = 0

==> 12t = 16

==> t= 16/12 = 4/3

==> t= 4/3.

==> Now we will substitute into y'.

==> y' = 3x^2 + 4x + 4/3 = 0

==> x1= -4 + sqrt(b62-4ac)/ 2*3 = -4/6 = -2/3

==> x = -2/3

Therefore t = 4/3 and x = -2/3

Approved by eNotes Editorial Team

Posted on

Soaring plane image

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial