Solve `5|x+7|=65` :
`|x+7|=13` dividing both sides by 5.
Now recall the definition of absolute value. `|x|=x` if x>0 and `|x|=-x` if x<0 (read as the opposite of x).
There are two possibilities for the inside of the absolute value bars in order to satisfy the equation. If the...
See
This Answer NowStart your subscription to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.
Already a member? Log in here.
Solve `5|x+7|=65` :
`|x+7|=13` dividing both sides by 5.
Now recall the definition of absolute value. `|x|=x` if x>0 and `|x|=-x` if x<0 (read as the opposite of x).
There are two possibilities for the inside of the absolute value bars in order to satisfy the equation. If the inside is 13 then |13|=13. If the inside is -13, however, then |-13|=13 also. So there are two possible answers:
`x+7=13==>x=6`
`x+7=-13==>x=-20`
So the two answers are 6 and -20.
Cosider the graph of `y=5|x+7|` and y=65:
The equation 5|x+7|=65 has to be solved for x.
5|x+7|=65
=> |x+7|= 13
|x + 7| = 13
=> x + 7 = 13 and x + 7 = -13
=> x = 6 and x = -20
The solution for the equation 5|x+7|=65 is x = 6 and x = -20