how do you find y'' of (x^3)+(y^3)=1?i got as far as y'=(-x^2)/y^2...help!  

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We need to find the second derivative for the equation:

`x^3 + y^3 = 1`

`==> 3x^2 + 3y^2 y' = 0`

`==> 3y^2y' = -3x^2`

``Now we will differentiate again:

==> `(3y^2)'(y')+(3y^2)(y')' = (-3x^2)'`

`==> 6yy' + 3y^2y'' = -6x`

`==> 3y^2y'' = -6x-6yy'`

`==> y'' = (-6(x+yy'))/(3y^2)`

`==> y'' = (-2(x+yy'))/y^2`

`=> y'' = (-2(x+y(-x^2/y^2)))/y^2`

`==> y'' = (-2(x -x^2/y))/y^2 = (-2(xy-x^2)/y))/y^2 = (-2(xy-x^2))/y^3`

`==> y'' = (-2x(y-x))/y^3`

``

Approved by eNotes Editorial Team

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial