We need to find the second derivative for the equation:
`x^3 + y^3 = 1`
`==> 3x^2 + 3y^2 y' = 0`
`==> 3y^2y' = -3x^2`
``Now we will differentiate again:
==> `(3y^2)'(y')+(3y^2)(y')' = (-3x^2)'`
`==> 6yy' + 3y^2y'' = -6x`
`==> 3y^2y'' = -6x-6yy'`
`==> y'' = (-6(x+yy'))/(3y^2)`
`==> y'' = (-2(x+yy'))/y^2`
`=> y'' = (-2(x+y(-x^2/y^2)))/y^2`
`==> y'' = (-2(x -x^2/y))/y^2 = (-2(xy-x^2)/y))/y^2 = (-2(xy-x^2))/y^3`
`==> y'' = (-2x(y-x))/y^3`
``
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.